• Title/Summary/Keyword: Tunneling mechanism

Search Result 168, Processing Time 0.024 seconds

Charge Transport Phenomena of Polyaniline-DBSA/Polystyrene Blends (폴리 아닐 린-DBSA/폴리스타이렌 블렌드의 전하 이동 현상)

  • 김원중;김태영;고정우;김윤상;박창모;서광석
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.305-311
    • /
    • 2004
  • Charge transport phenomena of polyaniline-DBSA/High Impact Polystyrene (PAM-DBSA/HIPS) blends have been studied through an examination of electrical conduction. HIPS used host polymer in the blends and PANI-DBSA obey a space charge limited conduction mechanism and a ohmic conduction mechanism respectively. However, PANI-DBSA/HIPS blends do not obey any classical conduction mechanism. Analysis of conduction mechanism revealed that the charging current of PANI-DBSA/HIPS blends increased with the increase of PANI-DBSA content. This result migrlt be explained by the reduction in the distance between PANI-DBSA particles enabling the charge carriers to migrate from a chain to a neighboring chain via hopping or micro tunneling. It was also found that the charging current of PANI-DBSA/HIPS blends decreased as the temperature was elevated, which is of typical phenomena in metals. It is speculated that the charge transport in PANI-DBSA particle was somewhat constrained due to strong phonon scattering.

Characteristics of Electrical Conduction Mechanism of OLED with Various Temperature (유기 발광 다이오드의 온도에 따른 전도특성)

  • Lee, Dong-Gyu;Kim, Tae-Wan;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.197-200
    • /
    • 2005
  • We have studied conduction mechanism that is interpreted in terms of space charge limited current (SCLC) region and tunneling region. The OLEDs are based on the molecular compounds, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) as a hole transport, tris (8-hydroxyquinolinoline) aluminum(III) $(Alq_3)$ as an electron injection and transport and emitting layer. We manufactured reference structure that has in $ITO/TPD/Alq_3/Al$. Buffer layer effects were compared to reference structure. And we have analyzed out electrical conduction mechanism in $ITO/Alq_3/Al$ device with various temperature.

  • PDF

Performance and SILC Characteristics of Flash Memory Cell With Ultra thin $N_2O$ Annealed Tunneling Oxide (초박막의 $N_2O$ 어닐링한 터널링 산화막을 갖는 Flash Memory Cell의 SILC 특성 및 성능)

  • Son, Jong-Hyoung;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.1-8
    • /
    • 1999
  • In this paper, we have studies the transport mechanism and origin of SILC for the various thickness of wet oxide. Also, SILC characteristics of $N_2O$ annealed oxide was included in this study. We made the flash memory cell with $N_2O$ annealed oxide of 60Athick under $0.25{\mu}m$ design rule, and measured the characteristics of the cell. As a result, we have found that the origin of SILC is due to the trap formed inside of the oxide layer by electrical stress. And we reached the conclusion that the transport mechanism of SILC is ruled by the modified F-N tunneling if the electric field is lower than 8MV/cm or typical F-N tunneling if the electric field is higher than 8MV/cm. We could also confirm the fact that $N_2O$ annealed oxide of 60Athick have an improved resistance effect against SILC. In case that we apply $N_2O$ annealed oxide of 60Athick to the flash memory, we could confirm $10^6$ times endurance and more than 10 years drain disturb, and could get 8V programmable flash memory characteristics.

  • PDF

Two-dimensional Chiral Honeycomb Structures of Unnatural Amino Acids on Au(111)

  • Yang, Sena;Jeon, Aram;Lee, Hee-Seung;Kim, Sehun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.191.1-191.1
    • /
    • 2014
  • Crystallization has become the most popular technique for the separation of enantiomers since the Pasteur's discovery. To investigate mechanism of crystallization of chiral molecules, it is necessary to study self-assembled structures on two-dimensional surface. Here, we have studied two-dimensional self-assembled structures of an unnatural amino acid, (S)-${\beta}$-methyl naphthalen-1-${\gamma}$-aminobutyric acid (${\gamma}^2$-1-naphthylalanine) on Au(111) surface at 150 K using scanning tunneling microscopy (STM). At initial stage, we found two chiral honeycomb structures which are counter-clockwise and clockwise configurations in one domain. The molecules are arranged around molecular vacancies, dark hole. By further increasing the amounts of adsorbed ${\gamma}^2$-1-naphthylalanine, a well-ordered square packed structure was observed. In addition, we found the other structure that molecules were trapped in the pore of the hexagonal molecular assembly.

  • PDF

The Electrical Property of Polymer Matrix Composites Added Carbon Powder

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.678-682
    • /
    • 2015
  • The electrical property of polymer matrix composites with added carbon powder is studied based on the temperature dependency of the conduction mechanism. The temperature coefficient of the resistance of the polymer matrix composites below the percolation threshold (x) changed from negative to positive at 0.20 < x < 0.21; this trend decreased with increasing of the percolation threshold. The temperature dependence of the electrical property(resistivity) of the polymer matrix composites below the percolation threshold can be explained by using a tunneling conduction model that incorporates the effect of the thermal expansion of the polymer matrix composites into the tunneling gap. The temperature coefficient of the resistance of the polymer matrix composites above the percolation threshold has a positive value; its absolute value increased with increasing volume fraction of carbon powder. By assuming that the electrical conduction through the percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of the carbon power, the temperature dependency of the resistivity above the percolation threshold can be well explained without violating the universal law of conductivity.

A study of the design and control system for the ultra-precision stage (초정밀 스테이지 설계 및 제어 시스템에 관한 연구)

  • Park Jongsung;Jeong Kyuwon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

Degradation of Gate Induced Drain Leakage(GIDL) Current of p-MOSFET along to Analysis Condition (분석 조건에 따른 p-MOSFET의 게이트에 유기된 드레인 누설전류의 열화)

  • 배지철;이용재
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.26-32
    • /
    • 1997
  • The gate induced drain leakage(GIDL) current under the stress of worse case in -MOSFET's with ultrathin gate oxides has been measured and characterized. The GIDL current was shown that P-MOSFET's of the thicker gate oxide is smaller than that of the thinner gate oxide. It was the results that the this cur-rent is decreased with the increamental stress time at the same devices.It is analyzed that the formation components of GIDL current are both energy band to band tunneling at high gate-drain voltage and energy band to defect tunneling at low drain-gate voltage. The degradations of GIDL current was analyzed the mechanism of major role in the hot carriers trapping in gate oxide by on-state stress.

  • PDF

The Electrical Conduction Characteristics of Organo-lanthanide based OLEDs (Organo-lanthanide를 이용한 OLED의 전기 전도 특성)

  • Ha, Mi-Young;Kim, So-Youn;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.412-413
    • /
    • 2006
  • The electrical conduction mechanism of ITO / Terbium tris - (1 - phenyl - 3 - methyl - 4 - (tertiarybutyryl) - pyrazol - 5 - one) triphenylphosphine oxide [$(tb-PMP)_3Tb-(Ph_3PO)$]/Mg/Al devices has been investigated. The calculation of electric field in single layer organic layer between cathode and anode shows the uniform distribution for the electron injection barrier of over 1.4 eV. The measured current-voltage curve shows well matching with the calculated curve based on the tunneling injection of electron under the uniform distribution of electric field.

  • PDF

Literature Review of Fracture Mechanics and Blasting and Excavation Damaged Zone (파괴역학과 굴찰과 발파로 인한 암반 손상영역의 문헌적 고찰)

  • Yang H.S.;Ha T.W.;Kim W.B.;Jung J.H.
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.209-217
    • /
    • 2006
  • Literatures on the fracture mechanics and damaged zone of rocks were studied to estimate the excavation and blasting damaged zone for rapid tunneling. Fracture mechanics were applied to explain fracture mechanism and to estimate damaged zone and seemed to be applicable for controlling the fractures.

Nano-Scale Surface Observation of Cyclically Deformed Copper and Cu-Al Single Crystals (반복변형된 Cu 및 Cu-Al 단결정 표면형상의 나노-스케일 관찰)

  • 최성종;이권용
    • Tribology and Lubricants
    • /
    • v.16 no.5
    • /
    • pp.389-394
    • /
    • 2000
  • Scanning Probe Microscope (SPM) such as Scanning Tunneling Microscope (STM) and Atomic Force Microscope (AEM) was shown to be the powerful tool for nano-scale characterization of material surfaces. Using this technique, surface morphology of the cyclically deformed Cu or Cu-Al single crystal was observed. The surface became proportionately rough as the number of cycles increased, but after some number of cycles no further change was observed. Slip steps with the heights of 100 to 200 nm and the widths of 1000 to 2000 nm were prevailing at the stage. The slipped distance of one slip system at the surface was not uniform, and formation of the extrusions or intrusions was assumed to occur such place. By comparing the morphological change caused by crystallographic orientation, strain amplitude, number of cycles or stacking fault energy, some interesting results which help to clarify the basic mechanism of fatigue damage were obtained. Furthermore, applicability of the scanning tunneling microscopy to fatigue damage is discussed.