• Title/Summary/Keyword: Tunnel recombination layer

Search Result 5, Processing Time 0.02 seconds

Improved Carrier Tunneling and Recombination in Tandem Solar Cell with p-type Nanocrystalline Si Intermediate Layer

  • Park, Jinjoo;Kim, Sangho;Phong, Pham duy;Lee, Sunwha;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2020
  • The power conversion efficiency (PCE) of a two-terminal tandem solar cell depends upon the tunnel-recombination junction (TRJ) between the top and bottom sub-cells. An optimized TRJ in a tandem cell helps improve its open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE). One of the parameters that affect the TRJ is the buffer layer thickness. Therefore, we investigated various TRJs by varying the thickness of the buffer or intermediate layer (TRJ-buffer) in between the highly doped p-type and n-type layers of the TRJ. The TRJ-buffer layer was p-type nc-Si:H, with a doping of 0.06%, an activation energy (Ea) of 43 meV, an optical gap (Eg) of 2.04 eV, and its thickness was varied from 0 nm to 125 nm. The tandem solar cells we investigated were a combination of a heterojunction with intrinsic thin layer (HIT) bottom sub-cell and an a-Si:H (amorphous silicon) top sub-cell. The initial cell efficiency without the TRJ buffer was 7.65% while with an optimized buffer layer, its efficiency improved to 11.74%, i.e., an improvement in efficiency by a factor of 1.53.

Optimization Amorphous Silicon Tandem Cell for an applying Inorganic-organic Hybrid Cell (유무기 하이브리드 태양전지 적용을 위한 탠덤형 비정질 실리콘 태양전지 최적화 기술)

  • Jinjoo Park;Sangmin Yoo
    • Current Photovoltaic Research
    • /
    • v.12 no.3
    • /
    • pp.80-85
    • /
    • 2024
  • Purpose of higher conversion efficiencies, thin-film silicon solar cells based on amorphous silicon have been developed with a multiple-stack structure to fully utilize the absorption spectrum. Microcrystalline silicon (µc-Si) is commonly used in the bottom cell of such tandem junction solar cells, offering improved conversion efficiencies. However, the requirement for a thicker absorption layer to generate sufficient photocurrent presents challenges, primarily due to the lower absorption coefficient of µc-Si, resulting in longer deposition times and greater material thickness. To address these limitations, we propose the development of inorganic-organic hybrid solar cells by integrating a-Si tandem with solution-processed organic photovoltaic cells (OPVs), using low-bandgap semiconducting polymers. The OPVs have garnered significant attention as promising candidates for next-generation photovoltaic technology. As part of this effort, we have optimized the a-Si tandem cell by exploring different materials for a tunnel recombination layer and high quality intrinsic layers. The hybrid approach combines the advantages of both inorganic and organic materials, potentially offering a pathway towards more efficient and cost-effective solar cell solutions.

Optimized ultra-thin tunnel oxide layer characteristics by PECVD using N2O plasma growth for high efficiency n-type Si solar cell

  • Jeon, Minhan;Kang, Jiyoon;Oh, Donghyun;Shim, Gyeongbae;Kim, Shangho;Balaji, Nagarajan;Park, Cheolmin;Song, Jinsoo;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.308-309
    • /
    • 2016
  • Reducing surface recombination is a critical factor for high efficiency silicon solar cells. The passivation process is for reducing dangling bonds which are carrier. Tunnel oxide layer is one of main issues to achieve a good passivation between silicon wafer and emitter layer. Many research use wet-chemical oxidation or thermally grown which the highest conversion efficiencies have been reported so far. In this study, we deposit ultra-thin tunnel oxide layer by PECVD (Plasma Enhanced Chemical Vapor Deposition) using $N_2O$ plasma. Both side deposit tunnel oxide layer in different RF-power and phosphorus doped a-Si:H layer. After deposit, samples are annealed at $850^{\circ}C$ for 1 hour in $N_2$ gas atmosphere. After annealing, samples are measured lifetime and implied Voc (iVoc) by QSSPC (Quasi-Steady-State Photo Conductance). After measure, samples are annealed at $400^{\circ}C$ for 30 minute in $Ar/H_2$ gas atmosphere and then measure again lifetime and implied VOC. The lifetime is increase after all process also implied VOC. The highest results are lifetime $762{\mu}s$, implied Voc 733 mV at RF-power 200 W. The results of C-V measurement shows that Dit is increase when RF-power increase. Using this optimized tunnel oxide layer is attributed to increase iVoc. As a consequence, the cell efficiency is increased such as tunnel mechanism based solar cell application.

  • PDF

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell (터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구)

  • Lee, Changhyun;Park, Hyunjung;Song, Hoyoung;Lee, Hyunju;Ohshita, Yoshio;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.