• Title/Summary/Keyword: Tunnel model

Search Result 2,200, Processing Time 0.023 seconds

Effect of Rock Damage Induced by Blasting on Tunnel Stability (발파굴착의 암반손상이 터널안정성에 미치는 영향분석)

  • Lee, In-Mo;Yoon, Hyun-Jin;Kim, Dong-Hyun;Lee, Sang-Don;Park, Bong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.681-688
    • /
    • 2003
  • Rock damage induced by blasting can not be avoided during tunnel construction and may affect tunnel stability. But the mutual interaction between tunnel blasting design and tunnel stability design is generally not considered. Therefore this study propose a methodology to take into considration the results of the blasting damage in tunnel stability design. Rock damage is evaluated by dynamic numerical analysis for the most common blasting pattern adopted in road tunnel. Damage zone is determined by using the continuum damage model which is expressed as a function of volumetric strain. And the damage effect is taken into account by the damaged rock stiffness and the damaged failure criteria in tunnel stability assessment. The extend of plastic zone and deformation increase compared to the case of not considering blast-induced rock damage.

  • PDF

Dynamic Model of the Road Tunnel Pollution by Neural Networks (신경망을 이용한 도로터널 오염물질 동적 모델)

  • 한도영;윤진원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.838-844
    • /
    • 2004
  • In a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution below the required level. To develop control algorithms for a tunnel ventilation system, a dynamic simulation program may be used to predict the pollution level in a tunnel. Research was carried out to develop better pollution models for a tunnel ventilation control system. A neural network structure was adopted and compared by using actual poilution data. Simulation results showed that the dynamic model developed by a neural network may be effective for the development of tunnel ventilation control algorithms.

Dynamic response characteristics of crossing tunnels under heavy-haul train loads

  • Dong, Jie;Zhong, Shuai;Wang, Hai-long;Wu, Zhi-hui
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.103-112
    • /
    • 2020
  • The dynamic response of crossing tunnels under heavy-haul train loads is still not fully understood. In this study, based on the case of a high-speed tunnel underneath an existing heavy-haul railway tunnel, a model experiment was performed to research the dynamic response characteristics of crossing tunnels. It is found that the under-crossing changes the dynamic response of the existing tunnel and surrounding rock. The acceleration response of the existing tunnel enhances, and the dynamic stress of rock mass between crossing tunnels decreases after the excavation. Both tunneling and the excitation of heavy-haul train loads stretch the tunnel base, and the maximum tensile strain is 18.35 µε in this model test. Then, the measured results were validated by numerical simulation. Also, a parametric study was performed to discuss the influence of the relative position between crossing tunnels and the advanced support on the dynamic behavior of the existing tunnel, where an amplifying coefficient of tunnel vibration was introduced to describe the change in acceleration due to tunneling. These results reveal the dynamic amplifying phenomenon of the existing tunnel during the new tunnel construction, which can be referred in the dynamic design of crossing tunnels.

Mathematical modeling study for the stagnation pressure control system of the blow-down type wind tunnel (불어내기식 풍동의 정체실 압력제어 시스템 모델링)

  • 김영준;권정태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.206-211
    • /
    • 1992
  • A mathematical model of the blow-down type wind tunnel is developed in order to design the controller which controls the stagnation pressure being used to obtain the setpoint Mach Number. The motion of compressible fluids in the tunnel is modeled using the one-dimensional gasdynamics. The time responses of the wind tunnel states, such as pressures, mass flow rates, and valve open area, are investigated by digital computer simulation. By the simulation study it is shown that the real blow-down wind tunnel can be simulated by the obtained mathematical model.

  • PDF

SPICE Macro-Model for Magnetic Tunnel Junction (Magnetic Tunnel Junction의 SPICE Macro-Model)

  • 홍승균;송상헌;김수원
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 2003
  • This paper proposes new SPICE Macro-Model of Magnetic Tunnel Junction (MTJ) This Macro-Model has five I/O terminals, reproduces MTJ MR characteristics including hysteresis and behaves correctly to time varying input signals. Furthermore, this Model can be easily modified to various MTJs with different characteristics by simply varying internal parameters.

Investigation on vortex-induced vibration of a suspension bridge using section and full aeroelastic wind tunnel tests

  • Sun, Yanguo;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.565-587
    • /
    • 2013
  • Obvious vortex induced vibration (VIV) was observed during section model wind tunnel tests for a single main cable suspension bridge. An optimized section configuration was found for mitigating excessive amplitude of vibration which is much larger than the one prescribed by Chinese code. In order to verify the maximum amplitude of VIV for optimized girder, a full bridge aeroelastic model wind tunnel test was carried out. The differences between section and full aeroelastic model testing results were discussed. The maximum amplitude derived from section model tests was first interpreted into prototype with a linear VIV approach by considering partial or imperfect correlation of vortex-induced aerodynamic force along span based on Scanlan's semi-empirical linear model. A good consistency between section model and full bridge model was found only by considering the correlation of vortex-induced force along span.

Deformation Analysis of Shallow Tunnel Using Tunnel Model Test and Computational Analysis (모형시험과 수치해석을 이용한 저토피 터널의 변형거동에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Moon, Hong-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • The control and prediction of surface settlement, gradient and ground displacement are the main factors in shallow tunnel design and construction in urban area. For deformation analysis of shallow tunnel due to excavation it is important to identify possible deformation mechanism of shear bands developing from tunnel shoulder to the ground surface. This paper investigaties quantitatively the deformation behavior of shallow tunneling by model tunnel test and strain softening analysis Incorporating the reduction of shear stiffness and strength parameters. The comparison of model tunnel test result and numerical simulation using strain softening analysis showed good agreement in crown settlement, normalized subsidence settlement and developing shear bands above tunnel shoulder. In this study, it is blown that the strain softening modeling is applicable to the nonlinear deformation analysis of shallow tunnel.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

A study on stresses and displacements of the ground according to the closure ratio of tunnel face during tunnel excavation (터널 막장폐합비에 따른 지반 응력 및 침하량에 대한 연구)

  • Kim, Sang-Hwan;Min, Byeong-Heon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.369-378
    • /
    • 2010
  • This paper presents a new approach of closing the tunnel face with sprayed concrete to reduce the stress at the tunnel face and displacement occurring at the ground surface during tunnel excavation. In order to carry out this research, the experimental and numerical studies are performed. In the experimental study, the model tests are carried out according to the closure ratio of tunnel face, tunnel depth and tunnel excavation length. The model test results are analyzed and interpreted by numerical calculation in order to verify both results obtained from experimental and numerical studies. It is clearly found that the tunnel face stability is decreased in decreasing the closure ratio of tunnel face. The results also show that the tunnel face is stable when the closure ratio of tunnel face is larger than 80%. This research will be very useful to develop the economical tunnel face closing system.

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.