• Title/Summary/Keyword: Tunnel model

Search Result 2,200, Processing Time 0.03 seconds

A Simulation Model for the Study of the Territorial Behavior of Subterranean Termites (흰개미 테리토리행동 연구를 위한 시뮬레이션 모델)

  • Jeon, Won-Ju;Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • Subterranean termites forage by constructing tunnel networks in soil and encounter food resources during tunnel excavation. Some species of termites can travel up to 150 m underground. They often travel to the surface to find wood cellulose to feed their colony, which in turn causes extensive damage to wooden architecture, such as timber-frame houses. This type of damage has been constantly increasing along with global warming because higher temperatures provide an ecological niche for termites. The damage is closely related to termite territory size and distribution. Recently, as a way to research termite control, the necessity of a mathematical model to simulate termite territory formation in relation to damage has increased. So far, however, few studies have been conducted on the development of a model because it is difficult to quantify or characterize the relationship between territorial behavior and field conditions including complicated environmental factors. In the present study, we suggest a simulation model of the territoriality of the Formosan subterranean termites, Coptotermes formosanus (Shiraki), and Reticulitermes flavipes (Kollar), based on empirical data. The model consists of 2 procedures. One describes tunnel network growth for each colony, and the other represents territoriality based on tunnel-tunnel interactions between different colonies. Using the model, we show changes in territorial competition according to the termination probability of tunnel growth.

A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities (터널 라이닝 공동에 대한 GPR 신호 특성 분석을 위한 수치해석 연구)

  • Go, Gyu-Hyun;Lee, Sung Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.65-76
    • /
    • 2021
  • There is a possibility of cavities occurring inside and behind the lining of an aged tunnel structure. In most cases, it is not easy to check the cavity because it exists in a place where visual inspection is impossible. Recently, attempts have been made to evaluate the condition of the tunnel lining and the backfill materials using non-destructive tests such as Ground Penetrating Radar, and various related model tests and numerical analysis studies have been conducted. In this study, the GPR signal characteristics for tunnel lining model testing were analyzed using gprMax software, which was compared with model test results. The numerical model applied to the model test reasonably simulated the electromagnetic wave signal according to the change of the material such as tunnel lining and internal cavity. Using the verified GPR model, B-scan data for the development of the GPR signal analysis technique were obtained, which can evaluate the thickness of the tunnel lining, the presence of the cavity, the effect of the waterproof membrane, and the frequency band.

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances (각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가)

  • Pang, Seungki;Shin, Jinwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

A Study on Joint by Two-Stage Excavation in Tunnel (2단계로 굴착되는 터널의 절리에 대한 연구)

  • Byun Gwang-Wook;An Joung-Hwan;Kim Dong-Gab;Lee Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.185-194
    • /
    • 2005
  • Recently, the surrounding rock mass is understood as the major support system for the tunnel constructed in the rock mass. Generally, the rock mass contains many discontinuity planes such as joints, and thus, the tunnel behavior in the rock mass is governed by the characteristics of the discontinuity planes. In this study, the behavior of tunnel in jointed rock mass is studied by model tests and numerical analyses. The results shows that the behavior of tunnel depends on the different initial stress conditions, in case that the tunnel is excavated in the ground without any joints. When a joint is located near the tunnel, the pound stress and displacement tend to increase between the tunnel and the joint.

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints

  • Ding, Wen-Qi;Peng, Yi-Cheng;Yan, Zhi-Guo;Shen, Bi-Wei;Zhu, He-Hua;Wei, Xin-Xin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.337-354
    • /
    • 2013
  • For shield TBM (Tunnel Boring Machine) tunnel lining, the segment joint is the most critical component for determining the mechanical response of the complete lining ring. To investigate the mechanical behavior of the segment joint in a water conveyance tunnel, which is different from the vehicle tunnel because of the external loads and the high internal water pressure during the tunnel's service life, full-scale joint tests were conducted. The main advantage of the joint tests over previous ones was the definiteness of the loads applied to the joints using a unique testing facility and the acquisition of the mechanical behavior of actual joints. Furthermore, based on the test results and the theoretical analysis, a mechanical model of segment joints has been proposed, which consists of all important influencing factors, including the elastic-plastic behavior of concrete, the pre-tightening force of the bolts and the deformations of all joint components, i.e., concrete blocks, bolts and cast iron panels. Finally, the proposed mechanical model of segment joints has been verified by the aforementioned full-scale joint tests.

Development of Tunnel Construction Cost Model Using System Dynamics (시스템 다이내믹스를 이용한 터널공사비 모델 개발)

  • Park, Yong-Woo;Park, Hee-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.4
    • /
    • pp.468-475
    • /
    • 2012
  • Construction cost of tunnel is decided on construction area, site conditions, and construction methods. However, there is few research on developing models to estimate early construction costs. Therefore, this paper presents a model for early estimation tool for NATM tunnel using system thinking. The effect factors for tunnel construction cost were defined and the causal map is developed. Then empirical case analysis were performed to identify the cost difference due to tunnel length, excavation volume, and rock quality. The proposed model would be an alternative to estimate early construction cost of NATM tunnel.

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

Prediction of spatial distribution of air pollutants within tunnel (터널 내 대기오염물질의 공간분포 예측)

  • Park, Il-Gun;Hong, Min-Sun;Kim, Beom-Seok;Kang, Ho-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.607-616
    • /
    • 2012
  • The need for management of tunnel air quality is imminent considering the rapid increase of number and span of tunnels in Korea. To investigate spatial distribution of $CO_2$ within tunnels, $CO_2$ were measured and model simulations were performed in Namsan 1 tunnel. Results show that $CO_2$ concentrations were 250 ppm to 400 ppm higher in the exit than tunnel entrance. Also, $CO_2$ concentrations were 200 ppm to 300 ppm lower inside no ventilating vehicle than in the tunnel. Both experimental and model simulation results show that spatial distribution and concentration gradient of air pollutant inside tunnel are highly dependent on traffic density.