• Title/Summary/Keyword: Tunnel laminar flow type

Search Result 2, Processing Time 0.016 seconds

Numerical Ananlysis on the Tubulent Flow and Heat Transfer in the Tunnel Laminar Flow Type Clean Room(1) (터널층류방식 청정실에서의 난류운동과 열전달에 관한 수치해석(1))

  • 정한식;정효민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 1995
  • The turbulent flow and heat transfer in the tunnel laminar flow type clean room is investigated by a numerical simulation. The model clean room is assumed to be a rectngular $5m\times3m$, in which a worktable of 0.75m hight, and 1.5m or 3m long at the floor. Major parameters are the inlet flow velocity, inlet hole size and worktable surface distance. The mean Nusselt number is increased by increasing Reynolds number and can be expressed by the correlation equation.

  • PDF

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF