• Title/Summary/Keyword: Tunnel earth pressure

Search Result 137, Processing Time 0.038 seconds

Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 박시현;이석원;이규필;배규진;전오성;이종성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.149-156
    • /
    • 2002
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process of the ground material. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells, installed after construction of the tunnel lining, measure the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measuring results in the field, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process of the ground material. Considerations on the validity of the measuring results were paid. For the analysis of measurements, after dividing back fill process into three steps, various factors which affect on the behavior of tunnel lining were investigated at each step.

  • PDF

Modification of Terzaghi's Earth Pressure Formula on Tunnel Considering Dilatancy of Soil (지반의 팽창성을 고려한 터널의 테르자기 토압공식 수정)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, Terzaghi's formula was modified to solve problems considering the dilatancy effect of the soil for estimating the earth pressure acting on tunnel. It is performed for the comparison with Terzaghi's formula and modified Terzaghi's formula, tunnel model test result of Kobe University Rock Mechanics Laboratory. From comparison results of the earth pressure acting on tunnel, the earth pressure calculated by the Terzaghi's formula was estimated largest value. The earth pressure measured through the tunnel model test was least value. The difference between the earth pressure derived from Terzaghi's original formula and that derived from the modified formula was caused by the dilation effect, which was caused by the soil volume change. The difference between the earth pressure derived from the modified formula and the earth pressure measured through the tunnel model test, earth pressure results from the energy making failure surface. The results of FEM analysis were almost consistent with the results of mathematical analysis.

An experimental study on the reduction method of earth pressure acting on the cut-and-cover tunnel lining (개착식 터널의 라이닝에 작용하는 토압경감대책에 관한 실험적 연구)

  • Kim, Sang-Yoon;Im, Jong-Chul;Park, Lee-Keun;Bautista, Ferdinand E.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.952-957
    • /
    • 2004
  • Cut and Cover Method is generally used in shallow tunnels and tunnel entrances with thin soil cover. In this type of cons0truction, backfilling is considered to be the most important process. In this process even though the backfill material is thoroughly compacted, compaction and self-weight due to vehicular vibration and pressure exerted by the soil cause the backfill material to undergo self-compression which leads to settlement. The settlement of the backfill material subjects the tunnel lining under excessive earth pressure which cause cracking and deformation. In the model test performed installation of geotextile on the sides and top of the tunnel was able to reduce the earth pressure acting on the tunnel lining.

  • PDF

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

Experimental investigation of earth pressure on retaining wall and ground settlement subjected to tunneling in confined space

  • Jinyuan Wang;Wenjun Li;Rui Rui;Yuxin Zhai;Qing He
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.179-191
    • /
    • 2023
  • To study the influences of tunneling on the earth pressure and ground settlement when the tunnel passes through the adjacent underground retaining structure, 30 two-dimensional model tests were carried out taking into account the ratios of tunnel excavation depth (H) to lateral width (w), excavation width (B), and excavation distance using a custom-made test device and an analogical soil. Tunnel crossing adjacent existing retaining structure (TCE) and tunnel crossing adjacent newly-built retaining structure (TCN) were simulated and the earth pressure variations and ground settlement distribution during excavation were analyzed. For TCE condition, the earth pressure increments, maximum ground settlement and the curvature of the ground settlement curve are negatively related to H/B, but positively related to H/s and H/w. For TCN condition, most trends are consistent with TCE except that the earth pressure increments and the curvature of ground settlement curve are negatively related to H/w. The maximum ground settlement is larger than that observed in tunnel crossing the existing underground structure. This study provides an assessment basis for the design and construction under confined space conditions.

Seismic responses of a metro tunnel in a ground fissure site

  • Liu, Nina;Huang, Qiang-Bing;Fan, Wen;Ma, Yu-Jie;Peng, Jian-Bing
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.775-781
    • /
    • 2018
  • Shake table tests were conducted on scaled tunnel model to investigate the mechanism and effect of seismic loadings on horseshoe scaled tunnel model in ground fissure site. Key technical details of the experimental test were set up, including similarity relations, boundary conditions, sensor layout, modelling methods were presented. Synthetic waves and El Centro waves were adopted as the input earthquake waves. Results measured from hanging wall and foot wall were compared and analyzed. It is found that the seismic loadings increased the subsidence of hanging wall and lead to the appearance and propagation of cracks. The values of acceleration, earth pressure and strain were greater in the hanging wall than those in the foot wall. The tunnel exhibited the greatest earth pressure on right and left arches, however, the earth pressure on the crown of arch is the second largest and the inverted arch has the least earth pressure in the same tunnel section. Therefore, the effect of the hanging wall on the seismic performance of metro tunnel in earth fissure ground should be considered in the seismic design.

Variation of Earth Pressure Acting on the Cut-and-Cover Tunnel Lining due to Geotextile Mat Reinforcement (지오텍스타일 매트의 설치에 의한 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista, F.E.;Park, Lee-Keun;Im, Jong-Chul;Joo, In-Gon
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.25-40
    • /
    • 2007
  • Excessive earth pressure is one of the major mechanical factors in the deformation and damage of Cut-and-Cover Tunnel lining in shallow tunnels and portals of mountain tunnels (Kim, 2000). Excessive earth pressure may be attributed to insufficient compaction and consolidation of backfill material due to self-weight, precipitation and vibration caused by traffic (Komiya et al., 2000; Taylor et al., 1984; Yoo, 1997). Even though there were a lot of tests performed to determine the earth pressure acting on the tunnel lining, unfortunately there were almost no case histories of studies performed to determine remedial measures that reduce differential settlement and excessive earth pressure. In this study the installation of geotextile mat was selected to reduce the differential settlement and excessive earth pressure acting on the cut-and-cover tunnel lining. In order to determine settlement and earth pressure reduction effect (reinforcement effect) of geotextile mat reinforcement, laboratory tunnel model tests were performed. This study was limited to the modeling of rigid circular cut-and-cover tunnel constructed at a depth of $1.0D\sim1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. Model tests with varying soil cover, mat reinforcement scheme and slope roughness were performed to determine the most effective mat reinforcement scheme. Slope roughness was adjusted by attaching sandpaper #100, #400 and acetate on the cut slope surface. Mat reinforcement effect of each mat reinforcement scheme were presented by the comparison of earth pressure obtained from the unreinforced and mat reinforced model tests. Soil settlement reduction was analyzed and presented using the Picture Analysis Method (Park, 2003).

Variation of Earth Pressure Acting on Cut-and-Cover Tunnel Lining with Settlement of Backfill (되메움토의 침하에 따른 개착식 터널 라이닝에 작용하는 토압의 변화)

  • Bautista F.E.;Park Lee-Keun;Im Jong-Chul;Lee Young-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.27-40
    • /
    • 2006
  • Damage of cut-and-cover tunnel lining can be attributed to physical and mechanical factors. Physical factors include material property, reinforcement corrosion, etc. while mechanical factors include underground water pressure, vehicle loads, etc. This study is limited to the modeling of rigid circular cut and cover tunnel constructed at a depth of $1.0{\sim}1.5D$ in loose sandy ground and subjected to a vibration frequency of 100 Hz. In this study, only damages due to mechanical factors in the form of additional loads were considered. Among the different types of additional, excessive earth pressure acting on the cut-and-cover tunnel lining is considered as one of the major factors that induce deformation and damage of tunnels after the construction is completed. Excessive earth pressure may be attributed to insufficient compaction, consolidation due to self-weight of backfill soil, precipitation and vibration caused by traffic. Laboratory tunnel model tests were performed in order to determine the earth pressure acting on the tunnel lining and to investigate the applicability of existing earth pressure formulas. Based on the difference in the monitored and computed earth pressure, a factor of safety was recommended. Soil deformation mechanism around the tunnel was also presented using the picture analysis method.

Earth Pressure Analysis of Tunnel Ceiling according to Tunnel Plastic Zone (터널 소성영역에 따른 터널 천단토압 해석)

  • Park, Shin-Young;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.753-764
    • /
    • 2020
  • In this study, the plastic zone and internal earth pressure of the tunnel were calculated using the following three methods: metal plasticity to analyze the deformation of metal during plastic processing, Terzaghi's earth pressure theory from the geotechnical perspective and modified Terzaghi's earth pressure theory, and slip line theory using Mohr-Coulomb yield conditions. All three methods are two-dimensional mathematical analysis models for analyzing the plane strain conditions of isotropic materials. Using the theory of metallurgical plastics, the plastic zone and the internal earth pressure of the ground were obtained by assuming that the internal pressure acts on the tunnel, so different results were derived that did not match the actual tunnel site, where only gravity was applied. An analysis of the plasticity zone and earth pressure via the slip-line method showed that a failure line is formed in a log-spiral, which was found to be similar to the real failure line by comparing the results of previous studies. The earth pressure was calculated using a theoretical method. Terzaghi's earth pressure was calculated to be larger than the earth pressure considering the dilatancy effect.

Calculation and field measurement of earth pressure in shield tunnels under the action of composite foundation

  • Chi Zhang;Shi-ju Ma;Yuan-cheng Guo;Ming-yu Li;Babak Safaei
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2023
  • Taking a subway shield tunnel in a certain section of Zhengzhou Metro Line 5 as an example, the field tests of shield cutting cement-soil monopile composite foundation were carried out. The load and internal force of the tunnel lining under the action of composite foundation were tested on-site and the distribution characteristics and variation laws of earth pressure around the tunnel under the load holding state of the composite foundation were analyzed. Five different load combinations (i.e., overburden load theory + q0, Terzaghi's theory + q0, Bierbaumer's theory + q0, Xie's theory + q0, and the proposed method (the combination of compound weight method and Terzaghi's theory) + q0) were used to calculate the internal force of the tunnel structure and the obtained results were compared with the measured internal force results. The action mode of earth pressure on the tunnel lining structure was evaluated. Research results show that the earth pressure obtained by the calculation method proposed in this paper was more consistent with the measured value and the deviation between the two was within 5%. The distribution of the calculated internal force of the tunnel structure was more in line with the distribution law of field test data and the deviation between the calculated and measured values was small. This effectively verified the rationality and applicability of the proposed calculation method. Research results provided references for the design and evaluation of shield tunnels under the action of composite foundations.