• Title/Summary/Keyword: Tunnel direction

Search Result 477, Processing Time 0.029 seconds

Safety Assessment on Disposal of HLW from P&T Cycle (핵변환 잔류 고준위 방사성 폐기물 처분 성능 평가)

  • 이연명;황용수;강철형
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.132-145
    • /
    • 2001
  • The purpose and need of the study is to quantify the advantage or disadvantage of the environmental friendliness of the partitioning of nuclear fuel cycle. To this end, a preliminary study on the quantitative effect of the partition on the permanent disposal of spent PWR and CANDU fuel (HLW) was carried out. Before any analysis, the so-called reference radionuclide release scenario from a potential repository embedded into a crystalline rock was developed. Firstly, the feature, event and processes (FEPs) which lead to the release of nuclides from waste disposed of in a repository and the transport to and through the biosphere were identified. Based on the selected FEPs, the ‘Well Scenario’which might be the worst case scenario was set up. For the given scenario, annual individual doses to a local resident exposed to radioactive hazard were estimated and compared to that from direct disposal. Even though partitioning and transmutation could be an ideal solution to reduce the inventory which eventually decreases the release time as well as the peaks in the annual dose and also minimize the repository area through the proper handling of nuclides, it should overcome major disadvantages such as echnical issues on the partitioning and transmutation system, cost, and public acceptance, and environment friendly issues. In this regard, some relevant issues are also discussed to show the direction for further studies.

  • PDF

Drainage Control and Prediction of Slope Stability by GIS-based Hydrological Modeling at the Large Scale Open Pit Mine (GIS에 의한 대규모 노천광에서의 배수처리 및 사면안정 예측)

  • SunWoo, Choon;Choi, Yo-Soon;Park, Hyeong-Dong;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.360-371
    • /
    • 2007
  • This paper presents an application of drainage control and slope stability by GIS-based hydrological modeling to control the surface water from an operational point of view. This study was carried out on a region of Pasir open-pit coal mine, Indonesia. A detailed topographical survey was performed at the study area to generate a reliable DEM (Digital Elevation Model). Hydrology tools implemented in ArcGIS 9.1 were used to extract the characteristics of drainage system such as flow direction, flow accumulation and catchment area from DEM. The results of hydrological modeling and spatial analysis showed that current arrangement of pumping facility is not suitable and some vulnerable places to erosion exist on the bench face due to concentrated surface runoff. Finally, some practical measures were suggested to optimize the design of drainage system and to monitor the slope stability by the surface water management at the study region during heavy rainfall.

Field Application of Hydraulic Rock Splitting Technique to Biotite Granite (흑운모화강암 지역에 대한 수압암반절개기술의 현장 적용)

  • Park, Jongoh;Lee, Dal-Heui;Woo, Ik
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.263-270
    • /
    • 2017
  • Hydraulic rock splitting is a technique which leads to failure of rockmass by means of water injection with a pressure higher than the tensile strength of rockmass, using straddle packer installed in boreholes drilled from free surface. Field tests were conducted in this study for several slopes of biotite granite according to various designs for borehole layout and water injection. Test results showed that new cracks were generated to connect to adjacent holes or that pre-existed cracks were propagated by injection, finally leading to failure. In particular, this study suggests the possibility of controlling the direction of generated cracks with guide slot, since new cracks were generated parallel to the guide slots carved on a borehole wall before injection. Various types of borehole layout and injection methods should be further developed for the practical uses, considering the factors influencing on crack generation.

A Study of High Precision Position Estimator Using GPS/INS Sensor Fusion (GPS/INS센서 융합을 이용한 고 정밀 위치 추정에 관한 연구)

  • Lee, Jeongwhan;Kim, Hansil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.11
    • /
    • pp.159-166
    • /
    • 2012
  • There are several ways such as GPS(Global Positioning System) and INS (Inertial Navigation System) to track the location of moving vehicle. The GPS has the advantages of having non-accumulative error even if it brings about errors. In order to obtain the position information, we need to receive at least 3 satellites information. But, the weak point is that GPS is not useful when the 혠 signal is weak or it is in the incommunicable region such as tunnel. In the case of INS, the information of the position and posture of mobile with several Hz~several hundreds Hz data speed is recorded for velocity, direction. INS shows a very precise navigational performance for a short period, but it has the disadvantage of increasing velocity components because of the accumulated error during integration over time. In this paper, sensor fusion algorithm is applied to both of INS and GPS for the position information to overcome the drawbacks. The proposed system gets an accurate position information from experiment using SVD in a non-accessible GPS terrain.

Experimental studies on the aerodynamic performance of two box girders with side openings

  • Wang, Jiaqi;Yagi, Tomomi;Ushioda, Jun;Noguchi, Kyohei;Nagamoto, Naoki;Uchibori, Hiroyuki
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • A butterfly web girder is a box-shaped girder with discretely distributed side openings along the spanwise direction. Until now, there have been few studies related to the aerodynamic performance of the butterfly web bridge. The objective of the current study was to clarify the effects of the side openings on the aerodynamic performance of the girder. Two butterfly web girders with side ratios B/D = 3.24 and 5, where B is the girder width and D is the depth, were examined through a series of wind tunnel tests. A comparison of the results for butterfly web girders and conventional box girders of the same shape confirmed that the side openings stabilized the vortex-induced vibration and galloping when B/D = 3.24, whereas the vortex-induced vibration and torsional flutter were stabilized when B/D = 5. The change in the flow field due to the side openings contributed to the stabilization against the vibration. These findings not only confirmed the good aerodynamic performance of the butterfly web bridge but also provided a new method to stabilize the box girder against aerodynamic instabilities via discretely distributed side openings.

Wake effects of an upstream bridge on aerodynamic characteristics of a downstream bridge

  • Chen, Zhenhua;Lin, Zhenyun;Tang, Haojun;Li, Yongle;Wang, Bin
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.417-430
    • /
    • 2019
  • To study the wake influence of an upstream bridge on the wind-resistance performance of a downstream bridge, two adjacent long-span cable-stayed bridges are taken as examples. Based on wind tunnel tests, the static aerodynamic coefficients and the dynamic response of the downstream bridge are measured in the wake of the upstream one. Considering different horizontal and vertical distances, the flutter derivatives of the downstream bridge at different angles of attack are extracted by Computational Fluid Dynamics (CFD) simulations and discussed, and the change in critical flutter state is further studied. The results show that a train passing through the downstream bridge could significantly increase the lift coefficient of the bridge which has the same direction with the gravity of the train, leading to possible vertical deformation and vibration. In the wake of the upstream bridge, the change in lift coefficient of the downstream bridge is reduced, but the dynamic response seems to be strong. The effect of aerodynamic interference on flutter stability is related to the horizontal and vertical distances between the two adjacent bridges as well as the attack angle of incoming flow. At large angles of attack, the aerodynamic condition around the downstream girder which may drive the bridge to torsional flutter instability is weakened by the wake of the upstream bridge, and the critical flutter wind speed increases at this situation.

Analysis of Folding Wing Deployment with Aero and Restraint Effects (공기력 및 구속 효과를 고려한 접힘 날개 전개 성능 분석)

  • Kim, Seung-il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.533-539
    • /
    • 2015
  • Recently, guided missiles applies folding wings to save space. During wing deployment, aero force acting on wing effects significantly on deployment performance, usually aerodynamic coefficient are calculated by CFD analysis. However, Missile Datcom can calculates estimated aerodynamic coefficient very quickly by assuming wing deployment motions as dihedral angle of wing. If missile has external store, wings may need to be folded on top of each other. In this case, one of wing help or interrupt other wing deployment, locking effect. In this study, both effects were included on wing deployment performance analysis to criteria for wings locked condition and formulated wing deploy performance, and compared with wind tunnel test data. Analysis predicted vulnerable wind direction of wing deployment very well.

Thermohydromechanical Stability Study on the Joint Characteristics and Depth Variations in the Region of an Underground Radwaste Repository (절리 발달 특성 및 심도 변화에 의한 방사성폐기물 처분장 주변영역에서의 열수리역학적 안정성 연구)

  • Kim, Jhinwung;Daeseok Bae;Park, Chongwon
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.153-168
    • /
    • 2003
  • The objective of this present study is to understand long term(500 years) thermohydromechanical interaction behavior in the vicinity of a repository cavern on the joint location and repository depth variations. The model includes a saturated discontinuous granitic rock mass, PWR spent nuclear fuel in a disposal canister surrounded with compacted bentonite inside a deposition hole, and mixed bentonite backfilled in the rest of the space within a repository cavern. It is assumed that two joint sets exist within the model. Joint set 1 includes joints of 56$^{\circ}$ dip angle, spaced at 20 m, and joint set 2 is in the perpendicular direction to joint set 1 and includes joints of 34$^{\circ}$ dip angle, spaced at 20 m. In order to understand the behavior change on the joint location variations, 5 different models of 500m in depth are analyzed, and additional 3 different models of 1000 m in depth are analyzed to understand the effect of depth variation.

Development of Joint Survey System using Photogrammetric Technique (사진측량기법에 의한 절리조사 시스템 개발)

  • Son, Youngjin;Kim, Jaedong;Jeong, Wansoon;Kim, Jong-Hoon;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this study, a joint survey system was developed to efficiently analyze geometrical characteristics of joint structures in rock mass using photogrammetric technique. The system includes both hardware and software. The hardware consists of a high resolution image camera for photographing image of a surface of rock body, a direction controlling system for adjusting the attitude of camera, and a digital compass for measuring the rotation angle of camera. The software was also developed in order to analyze the orientation, density, mean length of joints revealed on the images of rock surfaces. The software developed in this study was named as JointeXtractor. As applying this system into several field measurements, the orientation, density, mean length of joints could be quantitatively measured through analyzing the images of rock surfaces, in which the case of a difficult-to-access area was especially included for the test of the system.

Optimal Routes Analysis of Vehicles for Auxiliary Operations in Open-pit Mines using a Heuristic Algorithm for the Traveling Salesman Problem (휴리스틱 외판원 문제 알고리즘을 이용한 노천광산 보조 작업 차량의 최적 이동경로 분석)

  • Park, Boyoung;Choi, Yosoon;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This study analyzed the optimal routes of auxiliary vehicles in an open-pit mine that need to traverse the entire mine through many working points. Unlike previous studies which usually used the Dijkstra's algorithm, this study utilized a heuristic algorithm for the Traveling Salesman Problem(TSP). Thus, the optimal routes of auxiliary vehicles could be determined by considering the visiting order of multiple working points. A case study at the Pasir open-pit coal mine, Indonesia was conducted to analyze the travel route of an auxiliary vehicle that monitors the working condition by traversing the entire mine without stopping. As a result, we could know that the heuristic TSP algorithm is more efficient than intuitive judgment in determining the optimal travel route; 20 minutes can be shortened when the auxiliary vehicle traverses the entire mine through 25 working points according to the route determined by the heuristic TSP algorithm. It is expected that the results of this study can be utilized as a basis to set the direction of future research for the system optimization of auxiliary vehicles in open-pit mines.