• 제목/요약/키워드: Tunnel design

검색결과 2,036건 처리시간 0.025초

Aerodynamic Damping Analysis of a Vane-type Multi-Function Air Data Probe

  • Lee, Yung-Gyo;Park, Young-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.99-104
    • /
    • 2013
  • Configuration design, analysis, and wind tunnel test of a vane-type multi-function air data probe (MFP) was described. First, numerical analysis was conducted for the initial configuration of the MFP in order to investigate aerodynamic characteristics. Then, the design was modified to improve static and dynamic stability for better response characteristics. The modified configuration design was verified through wind tunnel tests. The test results are also used to verify the accuracy of the analytical method. The analytically estimated aerodynamic damping provided by the Navier-Stokes equation solver correlated well with the wind tunnel test results. According to the calculation, the damping coefficient estimated from ramp motion analysis yielded a better correlation with the wind tunnel test than pitch oscillation analysis.

Estimation for Primary Tunnel Lining Loads

  • 김학준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

수압을 고려한 터널 라이닝의 응답 해석 (Response analysis of tunnel lining considering pore pressure)

  • 김기태;김영재;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.541-544
    • /
    • 2008
  • Generally numerical analysis of tunnel lining, under dynamic loading condition, performed not considering pore pressure. But if tunnel excavated under the surface of water, such as bottom of the sea, the river bed, tunnel lining can take pore water pressure. It may be different from evaluated numerical analysis not considering pore pressure. Therefore tunnel design should consider effect of water pressure acting on tunnel lining.

  • PDF

수직형 풍동을 응용한 고공강하 시뮬레이터의 설계에 대한 연구 (A Study on the Design of Free-Fall Simulator using concept of Vertical Wind Tunnel)

  • 최상길;조진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.447-452
    • /
    • 2000
  • In this study, the design of Free-Fall Simulator was carried out using concept of vertical wind tunnel. Free-Fall Simulator is not an experimental equipment but a training equipment. Therefore Free-Fall Simulator needs a large training section compared with test section of wind tunnel and has critical limit of height. These limits bring about the difficulty of design for a return passage. Due to small area ratio, the downstream flow of training section with high speed is not decelerated adequately to the fan section. High-speed flow leads to great losses in the small area ratio diffuser and corner. So design of diffusers and corners located between training section and fan section has a great effect on the Free-Fall Simulator performance. This study used an estimation method of subsonic wind tunnel performance. It considered each section of Free-Fall Simulator as an independent section. Therefore loss of one section didn't affect loss of other sections. Because losses of corner with vane and $1^{st}$ diffuser are most parts of overall Free-Fall Simulator, this study focused on the design of these sections.

  • PDF

터널 붕괴 위험도 지수(KTH-index)에 기반한 터널 설계안의 정량적 사전 위험도 시뮬레이션 (Quantitative preliminary hazard level simulation for tunnel design based on the KICT tunnel collapse hazard index (KTH-index))

  • 신휴성;권영철;김동규;배규진;이홍규;신영완
    • 한국터널지하공간학회 논문집
    • /
    • 제11권4호
    • /
    • pp.373-385
    • /
    • 2009
  • 이전 연구를 통하여 터널 굴진에 따른 터널 막장의 붕괴 위험에 대한 잠재 수준을 정량적으로 평가하기 위한 툴인 KTH-index(KICT Tunnel Collapse Hazard index) 지수화된 위험도 수준 표현 툴을 개발한바 있으며, 이는 다수의 시공현장에 성공적으로 적용되어 왔다. 본 연구에서는 제안된 터널 위험도 지수를 기반으로 수행된 터널 설계안의 전 종단구간에 대해 정량적인 위험도 수준을 시뮬레이션 하는 새로운 설계안 적정성 평가 방법을 제안하였다. 본 KTH-index 기반 시뮬레이션에서 가장 중요한 것은 시뮬레이션을 위한 입력항목의 결정이며, 대부분의 설계안 관련 항목과 시공관련 항목은 직접적으로 설계안으로부터 결정될 수 있으나, 불명확한 지반조건은 설계 당시 때 수행된 시추조사와 전기비저항 탐사를 기초로 준비된다. 이때, 낙관적 시나리오와 비관적 시나리오에 기반한 터널 종단 지반조건 시나리오가 설정되었다. 이러한 위험도 시뮬레이션을 통해서, 시뮬레이션 대상 설계안에 대한 위험도 수준을 사전에 파악할 수 있었으며, 사전에 파악된 요 주의구간은 시공단계와 연결시켜 시공 중 계측이나 막장관찰 시에 요긴하게 활용될 수 있는 정보를 제공할 수 있음을 확인하였다.

Performance Prediction of Tunnel-Type Small Hydro Power Plants with Diversion Dam

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 태양에너지
    • /
    • 제20권2호
    • /
    • pp.67-73
    • /
    • 2000
  • This study represents the methodology of performance prediction for small hydro power(SHP) sites. Nine tunnel type SHP sites with diversion dam were selected and the performance characteristics were analyzed by using a developed model. Also, primary design specifications such as design flowrate, plant capacity, and operational rate were suggested and feasibility for tunnel-type SHP sites were estimated. It was found that the design flowrate was most important parameter to exploit SHP plant and the methodology developed in this study was useful tool to analyze the performance of SHP sites.

  • PDF

터널굴착중 굴착면 단층파쇄대와 지하수 용출 구간에서 단계별 변위 거동 특성 분석 (Analysis of displacement behavior in fractured fault and groundwater flow under tunnel excavation)

  • 김낙영;박건태;백승철;이강현;최진웅;허열
    • 한국터널지하공간학회 논문집
    • /
    • 제19권1호
    • /
    • pp.71-82
    • /
    • 2017
  • 터널설계 및 시공 안정성을 확보하기 위해서는 필수적인 조건은 터널구간에 대한 세부적인 지반조사분석이다. 이러한 지반조사의 중요성은 터널구간에 단층파쇄대 분포와 규모 그리고 지하수 분포에 대한 분석을 위해 필요하다. 그러나 터널구간의 지형조건과 민원 등의 제한조건으로 터널설계시 지반조사를 수행하는데 어려운 경우에는 최소한의 조사를 수행한 결과를 활용하여 터널설계를 수행한다. 따라서 이러한 경우 터널 시공 중 단층파쇄대가 발생하는 경우에는 터널안정성 확보를 위해서 설계변경을 수행하여 보강공법을 결정하게 된다. 터널굴착면에 대한 보강시 가장 중요한 것은 신속한 보강을 수행하여 터널안정성을 확보하는 것인데 특히 굴착면에 지하수 용출이 발생하는 경우에는 더욱 신속한 보강이 필요하다. 본 연구에서는 터널굴착면에 단층파쇄대가 존재하고 있고 굴착 후 단층파쇄대로 인하여 변위가 발생한 상태에서 지하수 용출량이 급증한 경우의 붕락사례를 중심으로 단계별 거동특성을 분석하였다. 본 연구대상 터널은 1단계 변위가 수렴되지 않고 지속적으로 발생하여 보강조치를 하였고 그 이후 지하수 용출량의 증가로 인해 변위가 수렴되지 않고 2단계 변위가 발생하여 추가보강 작업중 3단계 변위발생 과정 중 지표면 함몰붕락이 발생한 것으로 분석되었다.

여객/화물 복합열차 HSB의 터널 공력특성에 대한 시뮬레이션 연구 (A Numerical Study on Aerodynamic Characteristics in Tunnel for High Speed Combi Train-HSB)

  • 노주현
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.54-59
    • /
    • 2014
  • The new high speed combi train prototype project was developed which named HSB. It runs over the speed of 330km/h. As the speed of the train exceeds over 300km/h, due to pressure change in tunnel, aerodynamic problems such as sudden drag increase, severe acoustic noise, passenger discomfort and tunnel pressure sonic boom were occurred. This aerodynamic characteristics in tunnel should be reviewed in early design state to enhance the performance and driving quality of new high speed train. In this paper, the aerodynamic characteristics in tunnel for HSB such as pressure waves in tunnel, a rate of pressure change in cabin and micro pressure wave that cause sonic boom outside tunnel are analyzed by 2D axisymmetric CFD simulations. The results are also compared with the value for ordinary high speed train like the KTX-Sancheon. It is helpful how to design the configuration of HSB train. Finally it shows that the HSB train was well designed in tunnel condition because all values fulfill the criterions on UIC code and Korean national regulations.

응력집중을 고려한 터널의 3차원 거동에 관한 연구 -하중분담률 중심으로 (The 3-Dimensional Tunnel Analysis Considering Stress Concentration . Load Distribution Ratio)

  • 이인모;최항석
    • 한국지반공학회지:지반
    • /
    • 제12권1호
    • /
    • pp.87-110
    • /
    • 1996
  • 터널굴착시, 막장부근의 3차원 효과를 반영하기 위해 주로 경험적인 하중분담률 개념을 도입한 2차원 유한차분법 수치해석이 수행된다. 본 논문에서는 3차원 수치해석을 수행하고 그 해석 결과와 2차원 수치해석 결과를 비교함으로써 합리적인 하중분담률의 적용 가능성 및 막장 부근의 음력집중 문제를 규명하고자 하였다. 무지보 굴착길이, 초기지중응력, 지반종류, 단면크기와 터널심도등의 하중분담률에 주된 영향을 미치는 인자들에 대한 매개변수 연구를 수행하고, 그 결과를 토대로 서울지하철의 대표적인 단면에 대해 적용가능한 하중분담률을 추천하였다.

  • PDF

Preliminary study on the ground behavior at shore connection of submerged floating tunnel using numerical analysis

  • Kang, Seok-Jun;Kim, Jung-Tae;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제21권2호
    • /
    • pp.133-142
    • /
    • 2020
  • Submerged floating tunnel (SFT) is a type of tunnel which causes the tunnel segments to float in the water. When the SFTs are connected to the ground, the connection between the SFT and the subsea bored tunnel is fragile due to the difference in behavioral characteristics between the two types of tunnels. Therefore, special design and construction methods are needed to ensure the stability of the area around the connection. However, since previous research on the stability of the connection site has not been undertaken enough, the basic step necessitates the evaluation of ground behavior at the shore connection. In this study, the numerical analysis targeting the shore connection between the subsea bored tunnel and the SFT was simulated. The strain concentration at the shore connection was analyzed by numerical simulation and the effects of several factors were examined. The results showed the instability in the ground close to the shore connection due to the imbalance in the behavior of the two types of tunnels; the location of the strain concentration varies with different environmental and structural conditions. It is expected that the results from this study can be utilized in future studies to determine weak points in the shore connection between the submerged floating tunnel and the subsea bored tunnel, and devise methods to mitigate the risks.