• Title/Summary/Keyword: Tunnel deformation

Search Result 460, Processing Time 0.027 seconds

Longitudinal Deformation Characteristics during Excavation of a old Tunnel in Operation (노후터널의 운영중 터널확대시 지반종단변형특성에 관한 연구)

  • Baek, Ki-Hyun;Kim, Woong-Ku;Seo, Kyoung-Won;You, Dong-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.47-54
    • /
    • 2011
  • In this paper, longitudinal behaviors of a tunnel with respect to various conditions are analyzed, and a new equation of longitudinal deformation curve during tunnel expansion is proposed. Finally, the range of protection by a protector is investigated using the proposed equation. To achieve the objectives, numerical analysis according to the ground and expansion conditions is performed. The results show that the range of protection, when a 2 traffic lane tunnel is expanded to 4 traffic lanes, should cover at least 24m to backward and 35m forward.

Development of Inspection and Diagnosis System for Safety and Maintenance in Tunnel (터널 유지관리를 위한 안전진단시스템 개발에 관한 연구)

  • Kim, Young-Geun;Baek, Ki-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.37-50
    • /
    • 2001
  • Recently, as tunnel structure is getting old, many deformations and defects have been occurred. As tunnel has the characteristics of underground structure, the estimation of the cause of deformation is very difficult. Then, it is necessary to investigate the state of tunnel lining and to estimate the deformation cause and safety for tunnel. In this study, inspection and diagnosis system for effective maintenance in tunnel was researched. Firstly, non-destructive techniques such as GPR (ground penetrating radar), impact echo test, and infrared thermal techniques were applied to tunnel lining inspection. Tunnel lining analysis system was developed to analyze the stability of tunnel. And, tunnel soundness evaluation system was developed to find the probable causes and indicate the method for repair and reinforcement for tunnel.

  • PDF

Analyses of Existing Tunnel Liner Behaviors Caused by Excavation of Upper Layer with Using Laser Scanning Technology (레이저 스캐닝 기술을 이용한 기존 터널 상부굴착에 따른 라이닝 거동 분석)

  • Park, Tae-Soo;Lee, Seung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.29-36
    • /
    • 2015
  • This paper deals with inspecting and monitoring cracks developed on a subway tunnel liner during the construction of temporary supports and excavation. The cracks have developed near a enlarged part of the tunnel. Several measurements, crack gauge, internal displacement measurement, 3-D laser scanner have been conducted to monitor the progress of cracks and effects of them on the tunnel. Local measurement, additional propagation of cracks and deformation of liner, have been conducted by crack gauge and internal displacement measurement. Global inspection has been conducted by 3-D laser scanner. From the scanned data, occurrence of global deformation of tunnel and rail has been evaluated. Because of limited sequence of construction at the ground, no apparent deformation of crack propagation has been measured. As presented in this paper, deformation of tunnel liner and effects of rail need to be investigated in view of local and global aspects.

Ground Deformation Analysis of Tunnel Excavation Based on the Ground Characteristic Line Concept (지반특성곡선 개념을 이용한 터널굴착 거동해석)

  • 손준익;정하익
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.118-125
    • /
    • 1992
  • The ground deformation due to the tunnel excavation is dependent on various factors such as ground condition, geometry of the tunnel, excavation method, installation of support members, construction condition of each excavation stage, etc. And the distance from the facing effects significantly the stress conditions of the supported and unsupported ground due to the 3-dimensional structural nature of the excavated tunnel. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied against the surface of excavated ground. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members.

  • PDF

A study on the rock-support behavior due to railway tunnel excavation (철도터널 굴착에 의한 암반과 지보재의 거동에 관한 연구)

  • Kim Sun-Kon;Park Jong-Kwan;Jung In-Chul;Lee Seung-Do
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1077-1082
    • /
    • 2004
  • With increasing the number of tunnel constructions, more reliable analysis methods for tunnel excavation is needed to accomplish technically sound design, and stable and economical constructions. For this purpose, a series of construction procedures, which include excavation and support stages of tunneling, need to be considered. In this study, therefore, rock-support response behavior due to railway tunnel construction has been examined by using analytic methods and numerical calculations. For examining rock-support response behavior, the effects of shotcrete, thickness and time of installation have been considered. Through analytic and numerical calculations, it is shown that support pressure becomes higher with increasing the shotcrete thickness and stiffness, and hence the tunnel deformation tends to be stable. It is also important to notice that there is a significant effect of shotcrete installation time on the tunnel deformation, although no significant change in support pressure is observed.

  • PDF

Influence of Weak Ground Ahead of the Tunnel Face on 3D-displacement and Face Extrusion (막장전방의 연약층이 터널 3차원변위 및 막장 수평변위에 미치는 영향)

  • Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.189-206
    • /
    • 2003
  • During tunnel excavation in urban area a systematic monitoring is important for the purpose of determination of support type and quantity, as well as for the control of stability of both surface structures and the tunnel itself due to the frequently, and in many cases, abruptly changing ground condition. In Austria absolute displacement monitoring methods have replaced relative displacement measurements by geodetic methods to a large extent. Prompt detection of weak ground ahead of the tunnel face as well as better adjustment of excavation and support to the geotechnical conditions is possible with the help of the improved methods of data evaluation on sites. Deformation response of the ground to excavation starts ahead of the tunnel face, therefore, the deformation and state of the tunnel advance core is the key factor of the whole deformation process after excavation. In other words, the rigidity and state of the advance core play a determining role in the stability of both surface structures and the tunnel itself. This paper presents the results from detailed three-dimensional numerical studies, exploring vertical displacements, vector orientations and extrusions on tunnel face during the progressive advancement for the shallow tunnel in various geotechnical conditions.

A Study on the Deformation Behaviors around Twin Tunnels Using Scaled Model Tests (쌍굴터널 주변지반의 변형거동에 관한 모형실험 연구)

  • 김종우;박지용
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.381-390
    • /
    • 2004
  • In this study, scaled model tests were performed to investigate the deformation behaviors around twin tunnels. Eleven types of test models which had respectively different pillar widths, rock types and loading conditions were mode, where the modelling materials were the mixture of sand, plaster and water. The models with shallower pillar width were cracked under lower pressure than the models with thicker pillar width, and they showed the more tunnel convergences and the clear spatting failures. The models of hard rock were cracked under 50% higher pressure than the models of soft rock and they showed the less tunnel convergences. The failure and deformation behaviors of twin tunnels were also dependent on the loading conditions of models. Futhermore, the results of FLAC analysis were qualitatively coincident with the test results.

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.

NATE터널의 갱문 가시설 배후 균열에 따른 조치 및 보강사례

  • Kil, Ho-Un;Kim, Jin-Hong;Yoo, Jai-Sung;Cha, Bok-Nam
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.342-355
    • /
    • 2006
  • The Tunnel portal is designed on temporary support system which is composed by 28m height H-Pile method and Ground Anchor method. The tunnel has excavated about 30m from the portal, but some deformation is found on the surface ground just above the tunnel face. It was investigated very carefully to find out the causes of deformation. By the observation and study, two main causes of deformation are found out. The one is earth pressure increase compared with classical earth pressure theory. That was due to the direction of ground rock mass's discontinuities. It causes the increase of earth pressure that are activated by the direction of discontinuity. The other one is that present design method neglect the transferred force by removal of temporary support members and ground anchor within the tunnel contour line as the tunnel excavation proceeds As the result of removals of the member and anchor, some force transferred from removed systems to remaining supporting systems. In designing the portal support systems, lt must be considered the discontiunity of ground mass and the transfered force due to excation.

  • PDF

A Numerical Analysis on Ground Deformation due to Tunnel Excavation : Case Study of Seoul Subway NATM Tunnel (터널 굴착에 따른 지반 변형 수치해석 : 서울 지하철 NATM 터널 해석 사례 연구)

  • 손준익;이원제
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.133-151
    • /
    • 1991
  • In this paper an analytic discussion was made for a finite element analysis performed for the case study of Seoul subway NATM tunnel. The effects mainly discussed on the ground deformation analysis were the staged tunnel excavation and the excavated distance from a tunnel facing. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied on the excavated tunnel face. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members. And the three dimensional supporting effect due to the tunnel facing was evaluated based on an elastic closed-form solution and a result of two dimensional axisymmetric finite element analysis.

  • PDF