• Title/Summary/Keyword: Tunnel cavity

Search Result 164, Processing Time 0.022 seconds

Reconstruction of Congenital Absence of Vagina using Vulvoperineal Fasciocutaneous Flap: A Case Report (외음회음 근막피부피판을 이용한 선천성 질결여증의 재건례)

  • Kim, Mi-Sun;Kim, Chul-Han;Lee, Yong-Sek;Kang, Sang-Gue;Tark, Min-Sung
    • Archives of Plastic Surgery
    • /
    • v.37 no.6
    • /
    • pp.831-834
    • /
    • 2010
  • Purpose: Congenital absence of the vagina is a rare case. It occurs as a result of Mullerian duct aplasia or complete androgen insensitivity syndrome. The reconstructive modality includes skin graft, use of intestine and various methods of flap. We report a patient who underwent vulvoperineal fasciocutaneous flap to reconstruct congenital absence of the vagina, while the external genitalia and ovaries are normal. Methods: A 26-year-old woman presented with vaginal agenesis. Under general anesthesia, a U-shaped incision was made between the urethral meatus and the anus. The new vaginal pocket was created up to the level of the peritoneal reflection between the urinary structures and the rectum. Next, the vulvoperineal fasciocutaneous flaps were designed in a rectangular fashion. Flap elevation was begun at the lateral margin which the adductor longus fascia was incised and elevated, and the superficial perineal neurovascular pedicle was invested by the fascial layer. The medial border was then elevated. A subcutaneous tunnel was created beneath the inferior of the labia to rotate the flaps. The left vulvoperineal flap was rotated counterclockwise and the right was rotated clockwise. The neovaginal pouch was formed by approximating the medial and lateral borders. The tubed neovagina was then transposed into the cavity. Results: In 3 weeks, the vaginal canal remained supple After 6 weeks, the physical examination showed normalappearing labia majora and perineum with an adequate vaginal depth. A year after the operation, the patient had a 7 cm vagina of sufficient width with no evidence of contractures nor fibrous scar formation. The patient was sexually active without difficulty. Conclusion: Although many methods were described for reconstruction of vaginal absence, there is not a method yet to be approved as a perfect solution. We used the vulvoperineal fasciocutaneous flap to reconstruct a neovagina. This method had a following merits: a single-stage procedure, excellent flap reliability, the potential for normal function, minimal donor site morbidity and no need for subsequent dilatation, stents, or obturators. We thought that this operation has a good anatomic and functional results for reconstruction of the vagina.

Analysis of Instances of Characteristics Land Creep on the Mine Area in Korea (우리나라 광산지역에서의 땅밀림 사례 분석)

  • Park, Jae-Hyeon;Park, Seonggyun
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.4
    • /
    • pp.393-401
    • /
    • 2018
  • The aim of this study was to analyze the characteristics of ground subsidence and land-creeping in four mining areas in Korea. Land creeping were occurred by large-scale sinkholes and tensile cracks in the mining areas. This ares showed the shape as large-scale landslides by the collapsed stone debris pushed in the direction of gravity. The rock type in the No. 4 survey area was sandstone and shale, whereas that of other three areas was limestone. The limestone was generally vulnerable to land creeping. The ground subsidence and land creeping in four mining areas were located near the ridge of the mountain. The land creeping by ground subsidence in the mining areas showed complex shapes due to the cavity of underground tunnel and the colluvial debris by gravity in the mountain area, whereas the land creeping in Korea are in the shape of landslide. The average slope of the mining area was ranged from $30.4^{\circ}$ to $33.7^{\circ}$. The values were higher ($1.5^{\circ}{\sim}4.8^{\circ}$) than the average slopes for landslide areas.

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.

A Study on Pullout-Resistance Increase in Soil Nailing due to Pressurized Grouting (가압 그라우팅 쏘일네일링의 인발저항력 증가 원인에 관한 연구)

  • Jeong, Kyeong-Han;Park, Sung-Won;Choi, Hang-Seok;Lee, Chung-Won;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.101-114
    • /
    • 2008
  • Pressurized grouting is a common technique in geotechnical engineering applications to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressurized grouting has been applied to a soil-nailing system which is widely used to improve slope stability. Because interaction between pressurized grouting paste and adjacent ground mass is complicated and difficult to analyze, the soil-nailing design has been empirically performed in most geotechnical applications. The purpose of this study is to analyze the ground behavior induced by pressurized grouting paste with the aid of laboratory model tests. The laboratory tests are carried out for four kinds of granitic residual soils. When injecting pressure is applied to grout, the pressure measured in the adjacent ground initially increases for a while, which behaves in the way of the membrane model. With the lapse of time, the pressure in the adjacent ground decreases down to a value of residual stress because a portion of water in the grouting paste seeps into the adjacent ground. The seepage can be indicated by the fact that the ratio of water/cement in the grouting paste has decreased from a initial value of 50% to around 30% during the test. The reduction of the W/C ratio should cause to harden the grouting paste and increase the stiffness of it, which restricts the rebound of out-moved ground into the original position, and thus increase the in-situ stress by approximately 20% of the injecting pressures. The measured radial deformation of the ground under pressure is in good agreement with the expansion of a cylindrical cavity estimated by the cavity expansion theory. In-situ test revealed that the pullout resistance of a soil nailing with pressurized grouting is about 36% larger than that with regular grouting, caused by grout radius increase, residual stress effect, and/or roughness increase.