• Title/Summary/Keyword: Tunnel analysis

Search Result 3,111, Processing Time 0.029 seconds

Assessment of tunnel damage potential by ground motion using canonical correlation analysis

  • Chen, Changjian;Geng, Ping;Gu, Wenqi;Lu, Zhikai;Ren, Bainan
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.259-269
    • /
    • 2022
  • In this study, we introduce a canonical correlation analysis method to accurately assess the tunnel damage potential of ground motion. The proposed method can retain information relating to the initial variables. A total of 100 ground motion records are used as seismic inputs to analyze the dynamic response of three different profiles of tunnels under deep and shallow burial conditions. Nine commonly used ground motion parameters were selected to form the canonical variables of ground motion parameters (GMPCCA). Five structural dynamic response parameters were selected to form canonical variables of structural dynamic response parameters (DRPCCA). Canonical correlation analysis is used to maximize the correlation coefficients between GMPCCA and DRPCCA to obtain multivariate ground motion parameters that can be used to comprehensively assess the tunnel damage potential. The results indicate that the multivariate ground motion parameters used in this study exhibit good stability, making them suitable for evaluating the tunnel damage potential induced by ground motion. Among the nine selected ground motion parameters, peck ground acceleration (PGA), peck ground velocity (PGV), root-mean-square acceleration (RMSA), and spectral acceleration (Sa) have the highest contribution rates to GMPCCA and DRPCCA and the highest importance in assessing the tunnel damage potential. In contrast to univariate ground motion parameters, multivariate ground motion parameters exhibit a higher correlation with tunnel dynamic response parameters and enable accurate assessment of tunnel damage potential.

Study on the stability of tunnel and rock mass classification in Danyang limestone quarry (단양 석회석 광산터널의 암반 평가 및 안정성 연구)

  • ;Choon Sunwoo;Kong Chang Han;yeon-jun Park
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.131-143
    • /
    • 1996
  • In-situ survey and laboratory rock test were carried out for rating rock mass around the tunnel that some failures had been occurred in Danyang limestone quarry. For rating rock mass, several methods such as RMR, Q-system, rock strength etc. were applied. The stability analysis on tunnel was evaluated by numerical method FLAC. And The block theory using streographic projection was also applied for stability analysis. The 3-4 major discontinuity sets are distributed in rock mass around tunnel.

  • PDF

Analysis of the air tightness for high speed train (고속전철의 기밀 거동 해석)

  • 정병철;염경안;강석택
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.220-224
    • /
    • 2002
  • As the train run through the tunnels, especially at high speed, pressure shock developed by the running train gives the influence on the pressure fluctuation inside the tunnel and consequently, inside the car. This pressure changes and pressure gradient is closely related with the tunnel section, train speed, air tightness of the train, length of the tunnel, etc. This study includes the analysis of the pressure behavior at the varied train speed and tunnel length. The results show that train speed affects the pressure gradient inside the car almost linearly, and that there exist the critical tunnel lengths that gives the maximum value of pressure change and pressure gradient, respectively.

  • PDF

A Intercomparison on the estimating shield TBM tunnel face pressure through analytical and numerical analysis (이론해와 수치해석적 검토를 통한 쉴드TBM 막장압 산정 결과 상호비교)

  • Jun, Gy-Chan;Kim, Dong-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.273-282
    • /
    • 2016
  • This study estimates tunnel face pressure through existing 8 analytical equations and 3D numerical analysis, and compares and examines it. In general, the estimating tunnel face pressure of domestic shield TBM has been examined by a method according to analytical equation and empirical method, but numerical analysis is combined in a section passing complicated stratigraphic condition and special soil condition. Therefore, the researcher is to find a reliable method to examine of tunnel face pressure by confirming a correlation between tunnel face pressure estimated by equation and tunnel face pressure estimated by numerical analysis program. When tunnel face pressure is estimated, both analytical equation and numerical analysis were identically examined in soil conditions such as sandy soil and cohesive soil. In addition, existing analytical equation is used as equation, and 3D analysis copying construction process and shield tunnel as numerical analysis.

Application of risk analysis and assessment considering tunnel stability and environmental effects in tunnel design (터널 안정성 및 환경성을 고려한 위험도 평가기법의 적용)

  • Kim, Young-Geun;Kim, Do-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • Recently, because of the various factors by uncertainty of underground, the risks in tunnelling have been occurred increasingly. Therefore, it is very important to estimate and control the risks considering geotechnical conditions for tunnel stability and environmental problems by tunnel construction. In this study, the risk analysis for tunnel stability was carried out by classifying the risk factors such as ground support capacity, ground settlement, the inflow of groundwater into the tunnel and the damage by the earthquake. Also, the risk assessment for the environmental problems was performed by calculating the vibration and noise by blasting and the drawdown of the groundwater level caused by tunnel construction. Each risk factor was evaluated quantitatively based on the probabilistic and statistic technique, then it was analyzed the distribution characteristic along overall tunnel site. Finally, it was evaluated that how much each risk factor influences on the construction cost with a period for tunnel construction, so it is possible to perform reasonable tunnel design which was capable of minimizing the risks in the tunnel construction.

  • PDF

A Case Study on the Reinforcement Method of Subway Tunnel (도심지 지하철 터널의 지반보강공법 시공사례 연구)

  • 천병식;여유현;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.201-208
    • /
    • 1999
  • The NATM(New Austrian Tunnelling Method) has been used for tunnelling since 1980's. But Collapses of tunnel under construction take place frequently, especially at urban areas because of adjacent buildings, underground conduits and traffic loads. This paper is a case study on the reinforcement method of subway tunnel at urban areas. In this study, ground inspection, geological investigation, laboratory test and numerical analysis by means of FDM program were carried out. The tunnel excavation was stopped because of over excessive brake of tunnel crown and shotcrete was installed to prevent deformation of adjacent ground as the temporary method. From the result of field survey and geological investigation, it is found that the soft weathered soil was distributed to the ground of tunnel invert unlike original investigation. The results of the analysis and the study show that the SGR(Space Grouting Rocket) method and Umbrella method can be applied for the stability of tunnel excavation and in addition the reinforcement of concrete lining is required for long-term stability of tunnel.

  • PDF

Analysis on the behavior of a old tunnel supporting system by enlargement (노후터널 확대시 기존터널 지보재 응력 변화에 대한 분석)

  • Baek, Ki-Hyun;Kim, Woong-Ku;Seo, Kyoung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1382-1387
    • /
    • 2010
  • A 3D FEM numerical analysis was performed to observe the changes of supporting system of a old 1-lane tunnel when it is enlarged to 2-lane, 3-lane and 4-lane. The standard Type-III supporting pattern was applied to the new tunnel because the ground was assumed as Type-III. The observation was carried out at the middle supporting system of the old 1-lane tunnel alignment. The results shows that the changes of old tunnel supporting system began when the new tunnel was excavated at 2D(D is the equivalent diameter of 1-lane tunnel) behind of the observation place and became very rapid from 1D.

  • PDF

A study on the evaluation of tunnel safety through a series of field inspection for ASSM tunnel (재래식 터널 변상 조사 사례 및 안전성 평가에 관한 연구)

  • Park, Si-hyun;Maeng, Doo-young;Lee, Yu-seok;Kim, Young-ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.151-160
    • /
    • 2004
  • This study has carried out a series of field investigation for a ASSM railway tunnel which was constructed several decades ago. It appears that the tunnel lining was cracked in the region of arching structure. Precise inspection is carried out for this region with various non-destructive testing equipments. Based on the inspection results, the cause and the effect of tunnel defects were discussed by conducting the evaluation of tunnel safety with numerical analysis.

  • PDF

A Study of Grouting Design Method in Tunnel Under Grorundwater (지하수 영향을 받는 터널에서의 막장전면그라우팅 설계기법에 관한 연구)

  • Ahn Sung-Yul;Ahn Kyung-Chul;Kang Se-Gu
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.117-128
    • /
    • 2005
  • This Paper present design parameters of grouting by reviewing several published equations and the results of coupled analysis considering the difference of permeability between soil and grouted zone. Also, the feasibility of couped analysis in the design of grouting is studied for seeping water quantity into tunnel, displacement of tunnel face, drawing down of groud water table, settlement of ground and stress of tunnel supports.

  • PDF