• Title/Summary/Keyword: Tunnel Stability Estimation

Search Result 70, Processing Time 0.028 seconds

The development of a back analysis program for subsea tunnel stability under operation: longitudinal direction (운영 중 해저 터널의 안정성 평가를 위한 역해석 프로그램 개발: 종단방향)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.545-556
    • /
    • 2016
  • If a back analysis is used in various measurement information for the estimation of an operating subsea tunnel safety, it is possible to obtain the results within efficient error rate. With such a commercial geotechnical analysis program as FLAC3D, back analysis is performed with a DEA which was validated in previous studies. However, there is a problem that is relatively a time-consuming analysis. For this reason, beam-spring model-based FEM solver which takes shorter relative analysis time, was developed by Python language, and then combined with the built-DEA. In order to consider the assessment of safety of an operation tunnel near real-time, a program for longitudinal direction tunnel was developed due to its relative easy development for analysis solver engine.

Stability Analysis of Concrete Liner installed in a Compressed Air Storage Tunnel (압축공기 저장용 터널에 설치된 콘크리트 라이닝의 안정성 해석)

  • Lee, Youn-Kyou;Park, Kyung-Soon;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.498-506
    • /
    • 2009
  • The stability assessment of a concrete liner of a compressed air storage tunnel should be performed by an approach which is different from that commonly used for the liners of road tunnels, since the liner is exposed to high air pressure. In this study, the stability analysis method for the liner of compressed air storage tunnel is proposed based on the elastic and elasto-plastic solutions of the thick-walled cylinder problem. In case of elastic analysis, the yield initiation condition at the inner boundary is considered as the failure condition of the liner, while the condition which results in the extension of yielding zone to a certain depth is taken as a failure indicator of the liner in the elasto-plastic analysis taking Mohr-Coulomb criterion. The application of the proposed method revealed that the influence of the relative magnitude of boundary loads on the stability of liner is considerable. In particular, noting that the estimation of the outer boundary load may be relatively difficult, it is thought that the precise prediction of outer boundary load is very important in the analysis. Accordingly, the emphasis is put on the selection of the liner installation time, which may govern the magnitude of outer boundary load.

The Evaluation on the Type of Support Element by Field Test Data in 4-lane Wide Road Tunnel (4차로 광폭터널의 계측결과를 이용한 암반등급에 따른 지보수준 평가)

  • Do, Jongnam;Kim, Yeonjoong;Lee, Chanbok;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • Field measurement is a very essential factor for economic aspect and estimation of stability of tunnels. In this paper, various types of support element based on field test data in 4-lane wide road tunnel were evaluated. And stability and economical efficiency were also estimated. The estimated value were compared with design value and the type of support element which is applicable to site condition was evaluated. The results show that most of support elements were modified under the standard value(30mm) and type of support element which is already constructed was overestimated. So, appropriate level of support element have to be presented to save the time and cost during construction.

A Study on the Prediction of Surface Settlement Applying Umbrella Arch Method to Tunnelling (Umbrella arch 공법의 적용에 따른 횡방향 지표침하량 예측에 관한 연구)

  • 김선홍;문현구
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • Recently, Umbrella Arch Method(UAM) is commonly used in order to enhance the stability of tunnel itself and stabilize the adjacent surface structure. But quantitative estimation of reinforcement effect is needed because UAM is designed and constructed only on the basis of empirical experience. By using 3-dimensional finite element method, parametric study is performed for elastic modulus of ground and overburden, and reinforcement effect is analyzed quantitatively. From the results, surface settlement decreases about 9%∼27% in soil tunnel, about 4%∼24% in weathered rock tunnel and 4%∼17% in soft rock tunnel when applied with UAM. The prediction equation for final surface settlement is suggested through regression analysis and the equation is expressed as exponential function which has variable Smax, unknown coefficient i and k.

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters (지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측)

  • Yunseong Kang;Tae Young Ko
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.143-153
    • /
    • 2024
  • Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

A study on the estimation of rock mass classes using the information off a tunnel center line (터널 중심선으로부터 이격된 자료를 활용한 미시추구간의 암반등급 산정에 관한 연구)

  • You, Kwang-Ho;Lee, Sang-Ho;Choo, Suk-Yeon;Jue, Kwang-Sue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.101-111
    • /
    • 2004
  • In order to guarantee the stability of a tunnel and its optimum design, it is very important to obtain enough ground investigation data. In realty, however, it is not the case due to the limitation of measuring spatially distributed data and economical reasons. Especially, there are regions where drilling is impossible due to civil appeal and mountainous topology, and it is also difficult to estimate rock mass classes quantitatively with only geophysical exploration data. In this study, therefore, 3 dimensional multiple indicator kriging (3D-MI kriging), which can incorporate geophysical exploration data and drill core data off a tunnel center line, is proposed to cope with such problems. To this end, two dimensional mutiple indicator kriging, which is one of the geostatistical techniques, is extended for three dimensional analysis. Also, the proposed 3D-MI kriging was applied to determine the rock mass classes by RMR system for the design of a Kyungbu express rail way tunnel.

  • PDF

Estimation of Water Leak Rate in the Underground Oil Storage Cavern (지하 원유 저장공동에서의 누수량 산정에 대한 연구)

  • Shim, Hyun-Jin;Park, Tae-Jun;Jeong, Woo-Cheol;Kim, Ho-Yeong;Choi, Young-Tae
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.233-240
    • /
    • 2010
  • Double Plug is constructed for preventing mixing of two different oils between two compartments in the underground oil storage cavern. And the gas and oil tightness of double plug is tested from the measurement of water leakage from double plug after the completion of double plug water filling. If water leakage is underestimated, it can increase construction cost and if water leakage is overestimated, it can increase operating cost. Therefore, optimum water leakage should be estimated to cut down the cost. In this study, hydraulic stability analysis was conducted to consider permeable properties of rock mass around double plugs and a water leak rate from double plug was estimated from the hydraulic stability analysis and case study. Finally, the reliability of estimation of water leak rate was proven by comparing estimated water leak rate with measured data.

A Case Study on the Establishment of an Excavation Impact Range for Evaluating the Ground Stability of Deep Tunnels and Vertical Shaft Sections in Urban Areas (도심지 대심도 터널 및 수직구 구간 지반안정성 평가를 위한 굴착영향범위 설정 사례)

  • Lee, Seohyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.67-74
    • /
    • 2022
  • The setting of the target area for ground stability evaluation during ground excavation is categorized into theoretical and empirical estimation methods and numerical analysis methods. Generally, the applied theoretical and empirical estimation methods include those by Peck (1969), Caspe (1966), and Clough et al. (1990). The numerical analysis method comprehensively considered the current status of the task section (maximum excavation depth section, ground condition vulnerable section, etc.). It reflected the results of performing two and three-dimensional numerical analyses on the weakest section. Therefore, this study shows an example of setting the scope of influence when excavating the vertical and tunnel sections of a 000-line double-track private investment project through the above theoretical, empirical, and numerical analysis methods.

Calculation of Joint Center Volume (JCV) for Estimation of Joint Size Distribution in Non-Planar Window Survey (비평면 조사창에서의 암반절리 크기분포 추정을 위한 Joint Center Volume (JCV) 산정 기법 제안)

  • Lee, Yong-Ki;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.89-107
    • /
    • 2019
  • Rock joints have an extremely important role in analyzing the mechanical stability and hydraulic characteristics of rock mass structures. Most rock joint parameters are generally indicated as a distribution by statistical techniques. In this research, calculation technique of Joint Center Volume (JCV) is analyzed, which is required for estimating the size distribution having the largest uncertainty among the joint parameters, then a new technique is proposed which is applicable regardless of the shape of survey window. The existing theoretical JCV calculation technique can be applied only to the plane window, and the complete enumeration techniques show the limitations in joint trace type and analysis time. This research aims to overcome the limitations in survey window shape and joint trace type through calculating JCV by using Monte Carlo simulation. The applicability of proposed technique is validated through the estimation results at non-planar survey windows such as curved surface and tunnel surface.

Case study for Stability Estimation of Subway Twin Tunnels Using Scaled Model Tests (축소모형실험을 통한 지하철 병설터널의 안정성평가 사례연구)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.425-438
    • /
    • 2019
  • A scaled model test was performed to evaluate the stability of subway twin tunnels excavated in the sedimentary rocks with subhorizontal bedding planes. The size of studied tunnel was 6.2 m×6.8 m and pillar width was 4 m. The anisotropic model test specimen was manufactured with the modeling materials suitable for in-situ rocks by way of dimensional analysis. Fracture and deformation behaviors of tunnels according to applied loads were investigated through the biaxial compression test. As the load was increased on the model specimen, the first crack occurred in the middle part of the pillar across twin tunnels and the gradual fractures progressed at crown and floor of twin tunnels. All the cracks in pillar were generated along the existing bedding planes so that they were found to be the main cause of the pillar failure. In addition, the test results were verified by numerical analysis on the experimental conditions using FLAC ubiquitous joint model. The distribution of plastic regions obtained from numerical analysis were in general agreement with test results, confirming the reliability of the scaled model test conducted in this study.