• Title/Summary/Keyword: Tunnel

Search Result 8,691, Processing Time 0.031 seconds

A Study on the Analysis Method of Safety Cost of Tunnel Accident (터널사고 재난 안전비용 분석 방법에 관한 연구)

  • Baek, Chung-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This paper analyzed a survey of 388 general target samples to analyze the correlation between disaster safety costs and human risk factor analysis and evacuation behavior due to tunnel accidents. Considering the impact of the tunnel accident on disaster safety costs and the correlation between human evacuation and risk factors in the tunnel environment, the system should be reorganized to reflect the tunnel's basic plan, tunnel cross-section, tunnel installation.

Behavior of 2-Arch Tunnel with Stiffness of Grouting (그라우팅 강성도에 따른 2-Arch 터널의 거동)

  • Lee, Jong-Min;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.260-266
    • /
    • 2010
  • In this study, wish to analyze effect that affect on each tunnel (right and left tunnel) according as proceeding of leading tunnel (right tunnel), following tunnel (left tunnel) and pilot tunnel excavation through behavior of tunnel and surrounding base by model tests. And stress-transfer mechanism that occurs from in-situ loosing area and arching effect by difference of stiffness ratio and overburden heights were verified experimentally. The model tests were carried out by varying the stiffness of reinforced area and overburden height, measured deformation of tunnel and displacement of surrounding base. The model tests followed exactly the real 2-Arch tunnel construction stages.

A Study for Tunnel Management System Development Using a Tunnel Scanner (터널 스캐너를 이용한 터널 유지관리시스템 개발에 관한 연구)

  • Yoon, Tae-Gook;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.183-190
    • /
    • 2008
  • The maintenance and management of each tunnel has been individually performed in depending on service, management agency, and tunnel size. The maintenance and management system for the existing tunnel consists of simple tunnel card and the computerization of basic tunnel data, now. There is not the systemic maintenance and management system for tunnel. Therefore, it has been impossible the systemic maintenance and management for tunnel due to loss of data obtained from each step, such as, plan, design, construction, or maintenance, with time. The objective of this study is to build the database system in combing the results of tunnel scanning with all data obtained from plan, design, construction, or maintenance step.

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

Numerical analysis of water flow characteristics after inrushing from the tunnel floor in process of karst tunnel excavation

  • Li, S.C.;Wu, J.;Xu, Z.H.;Li, L.P.;Huang, X.;Xue, Y.G.;Wang, Z.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.4
    • /
    • pp.471-526
    • /
    • 2016
  • In order to investigate water flow characteristics after inrushing in process of karst tunnel excavation, numerical simulations for five case studies of water inrush from the tunnel floor are carried out by using the FLUENT software on the background of Qiyueshan high risk karst tunnel. Firstly, the velocity-distance curves and pressure-distance curves are drawn by selecting a series of probing lines in a plane. Then, the variation characteristics of velocity and pressure are analyzed and the respective optimized escape routes are made. Finally, water flow characteristics after inrushing from the tunnel floor are discussed and summarized by comparing case studies under the conditions of different water-inrush positions and excavation situations. The results show that: (1) Tunnel constructors should first move to the tunnel side wall and then escape quickly when water inrush happens. (2) Tunnel constructors must not stay at the intersection area of the cross passage and tunnels when escaping. (3) When water inrush from floor happens in the left tunnel, if tunnel constructors meet the cross passage during escaping, they should pass through it rapidly, turn to the right tunnel and run to the entrance. (4) When water inrush from floor happens in the left tunnel, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment in the vicinity of the right tunnel working face. In addition, some rescuing equipment can be set up at the high location of the cross passage. (5) When water inrush from floor happens in the cross passage, tunnel constructors should move to the tunnel side wall quickly, turn to the tunnel without water inrush and run to the entrance. (6) When water inrush from floor happens in the cross passage, if there is not enough time to escape, tunnel constructors can run to the trolley and other equipment near by the left or the right tunnel working face. The results are of important practical significance and engineering value to ensure the safety of tunnel construction.

A Study on Standard for State Assessment of Tunnel Structures (터널 구조물의 상태평가 기준에 관한 연구)

  • Oh, Hyuk-Hee;Shin, Yung-Suk;Lee, Jong-Woo;Park, Nam-Seo;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.35-55
    • /
    • 2001
  • Recently, as tunnel structures are getting older and decrepit, many tunnel inspections are carried out for evaluating the tunnel state and safety. But, because there is no exact standard for tunnel state and safety, depending on subjective decision, the new standard to assess the tunnel state is required. The existing standard including mainly the assessment of the state of tunnel lining is not considered the characteristics of tunnel as underground structures. Also, the item of assessment and process of grading and classifying the state of tunnel is not objective and systemetic. In this study, new standard for assessment of tunnel state is presented for improving the problems in evaluating the tunnel state and safety. In the new standard, the new items of assessment including geotechnical condition were selected and graded, the process in classifying the tunnel state is quantitative for objective assessment for tunnel state. This new standard and method is practically used in effective safety inspection and diagnosis and tunnel maintenance.

  • PDF

A Leakage Prevention Case of Primary 2-Arch Tunnel due to Heat Insulated Drainage (단열처리 유도배수에 의한 기존 2-Arch 터널의 누수방지 사례)

  • Kang, In-Kyu;Ryu, Jeong-Soo;Kim, Tae-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.561-564
    • /
    • 2007
  • This case was successfully constructed as a leakage prevention case of primary 2-arch tunnel located in Anyang, Gyungkido. The leakage of primary 2-arch tunnel was observed at middle wall of tunnel and girder of tunnel. Such a leakage of primary 2-arch tunnel generally occurred due to the damage of the waterproof membrane constructed on the middle wall during the blasting works of right and left tunnel after construction of the middle wall. As the leakage, icicles hanged from girder of tunnel in the winter. In such phenomenon, the risk of the traffic accident in the tunnel was high. In this case, leakage prevention works were successfully constructed using the heat insulated drainage.

  • PDF

Behavior of Tunnel Face Reinforced with Horizontal Pipes (수평보강재로 보강된 터널 막장의 거동)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.185-192
    • /
    • 1999
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A three-dimensional finite element model was adopted in this study to capture the three-dimensional nature of tunnel face behavior under various boundary conditions. A parametric study was peformed on a wide range of boundary conditions with emphasis on the effect of reinforcing layouts on the deformation behavior of tunnel face. The results of analysis such as tunnel face deformation behavior under various conditions were thoroughly analyzed, and a database for the behavior of tunnel face under different reinforcing conditions was established for future development of a semi-empirical design/analysis method for the tunnel face reinforcing technique. The results indicated that there exits an optimum reinforcing layout for a given tunnel condition, which must be selected with due consideration of tunnel geometry and ground condition.

  • PDF

Inspection for Internal Flaw and Thickness of Concrete Tunnel Lining Using Impact Echo Test (충격반향시험에 의한 콘크리트 터널 라이닝 내부결함 및 두께 조사)

  • 김영근;이용호;정한중
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.230-237
    • /
    • 1997
  • As concrete structure is getting old and decrepit, its inspection and diagnosis is getting important. Therefore, it is necessary to estimate the soundness of structure using non-destructive tests for effective repairs and maintenances. But, applications of non-destructive tests in tunnel have been used restrictively, due to accessibility only from one side in tunnel lining and presence of tunnel installations. Recently, the various non-destructive techniques have been studied. Especially, ground penetrating radar(GPR) and impact echo (IE) methods have been researched for tunnel inspection. In this study, the applicability of impact echo test in tunnel lining inspection has been investigated. This paper described the tunnel inspection for lining thickness and internal flaw using impact echo tests. Model tests were carried out using impact echo test systems on two concrete models, Model I is measuring for lining thickness, Model II is detecting for internal flaw. Also, the test were applied for lining inspections in a tunnel constructed by NATM. From the results of impact echo tests, we have concluded that impact echo test is a very useful and effective technique for inspecting the concrete tunnel linings.

  • PDF

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.