• Title/Summary/Keyword: Tuning Method

Search Result 1,258, Processing Time 0.024 seconds

Mask Wearing Detection System using Deep Learning (딥러닝을 이용한 마스크 착용 여부 검사 시스템)

  • Nam, Chung-hyeon;Nam, Eun-jeong;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, due to COVID-19, studies have been popularly worked to apply neural network to mask wearing automatic detection system. For applying neural networks, the 1-stage detection or 2-stage detection methods are used, and if data are not sufficiently collected, the pretrained neural network models are studied by applying fine-tuning techniques. In this paper, the system is consisted of 2-stage detection method that contain MTCNN model for face recognition and ResNet model for mask detection. The mask detector was experimented by applying five ResNet models to improve accuracy and fps in various environments. Training data used 17,217 images that collected using web crawler, and for inference, we used 1,913 images and two one-minute videos respectively. The experiment showed a high accuracy of 96.39% for images and 92.98% for video, and the speed of inference for video was 10.78fps.

Analysis of Operation Areas for Automatically Tuning Burst Size-based Loss Differentiation Scheme Suitable for Transferring High Resolution Medical Data (고해상도 의학 데이터 전송에 적합한 자동 제어 버스트 크기 기반 손실 차등화 기법을 위한 동작 영역 분석)

  • Lee, Yonggyu
    • Journal of Digital Convergence
    • /
    • v.20 no.4
    • /
    • pp.459-468
    • /
    • 2022
  • In medical area, very high resolution images, which is loss sensitive data, are used. Therefore, the use of optical internet with high bandwidth and the transmission of high realiability is required. However, according to the nature of the Internet, various data use the same bandwidth and a new scheme is needed to differentiate effectively these data. In order to achieve the differentiation, optical delay line buffers are used. However, these buffers is constructed based on some optimal values such as the average offered load, measured data burst length, and basic delay unit. Once the buffers are installed, they are impossible to reinstall new buffers. So, the scheme changing burst length dynamically was considered. However, this method is highly unstable. Therefore, in this article, in order to guarantee the stable operation of the scheme, the analysis of operation conditions is performed. With the analysis together with the scheme, high resolution medical data with the higher class can transmit stably without loss.

Service Differentiation Scheme Based on Burst Size Controlling Algorithm in Optical Internet (광 인터넷에서 버스트 크기 제어 알고리즘 기반 서비스 차등화 기법)

  • Lee, Yonggyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.562-570
    • /
    • 2022
  • The supply expansion of 5G services and personal smart devices has caused the sharp increase of data traffic and the demand of various services. Again, these facts have resulted in the huge demand of network bandwidth. However, existing network technologies using electronic signal have reached the limit to accommodate the demand. Therefore, in order to accept this request, optical internet has been studied actively. However, optical internet still has a lot of problems to solve, and among these barriers a very urgent issue is to develop QoS technologies. Hence, in order to achieve service differentiation between classes in optical internet, especially in OBS network, a new QoS method automatically tuning the size of data bursts is proposed in this article. Especially, the algorithm suggested in this article is based on fiber delay line.

Modeling of Boiler Steam System in a Thermal Power Plant Based on Generalized Regression Neural Network (GRNN 알고리즘을 이용한 화력발전소 보일러 증기계통의 모델링에 관한 연구)

  • Lee, Soon-Young;Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.349-354
    • /
    • 2022
  • In thermal power plants, boiler models have been used widely in evaluating logic configurations, performing system tuning and applying control theory, etc. Furthermore, proper plant models are needed to design the accurate controllers. Sometimes, mathematical models can not exactly describe a power plant due to time varying, nonlinearity, uncertainties and complexity of the thermal power plants. In this case, a neural network can be a useful method to estimate such systems. In this paper, the models of boiler steam system in a thermal power plant are developed by using a generalized regression neural network(GRNN). The models of the superheater, reheater, attemperator and drum are designed by using GRNN and the models are trained and validate with the real data obtained in 540[MW] power plant. The validation results showed that proposed models agree with actual outputs of the drum boiler well.

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Optimizing CNN Structure to Improve Accuracy of Artwork Artist Classification

  • Ji-Seon Park;So-Yeon Kim;Yeo-Chan Yoon;Soo Kyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.9-15
    • /
    • 2023
  • Metaverse is a modern new technology that is advancing quickly. The goal of this study is to investigate this technique from the perspective of computer vision as well as general perspective. A thorough analysis of computer vision related Metaverse topics has been done in this study. Its history, method, architecture, benefits, and drawbacks are all covered. The Metaverse's future and the steps that must be taken to adapt to this technology are described. The concepts of Mixed Reality (MR), Augmented Reality (AR), Extended Reality (XR) and Virtual Reality (VR) are briefly discussed. The role of computer vision and its application, advantages and disadvantages and the future research areas are discussed.

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

Enhanced Deep Feature Reconstruction : Texture Defect Detection and Segmentation through Preservation of Multi-scale Features (개선된 Deep Feature Reconstruction : 다중 스케일 특징의 보존을 통한 텍스쳐 결함 감지 및 분할)

  • Jongwook Si;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.369-377
    • /
    • 2023
  • In the industrial manufacturing sector, quality control is pivotal for minimizing defect rates; inadequate management can result in additional costs and production delays. This study underscores the significance of detecting texture defects in manufactured goods and proposes a more precise defect detection technique. While the DFR(Deep Feature Reconstruction) model adopted an approach based on feature map amalgamation and reconstruction, it had inherent limitations. Consequently, we incorporated a new loss function using statistical methodologies, integrated a skip connection structure, and conducted parameter tuning to overcome constraints. When this enhanced model was applied to the texture category of the MVTec-AD dataset, it recorded a 2.3% higher Defect Segmentation AUC compared to previous methods, and the overall defect detection performance was improved. These findings attest to the significant contribution of the proposed method in defect detection through the reconstruction of feature map combinations.

Tuning for Temperature Coefficient of Resistance Through Continuous Compositional Spread Sputtering Method (연속 조성 확산 증착 방법을 통한 저항 온도 계수의 튜닝)

  • Ji-Hun Park;Jeong-Woo Sun;Woo-Jin Choi;Sang-Joon Jin;Jin-Hwan Kim;Dong-Ho Jeon;Saeng-Soo Yun;Jae-Il Chun;Jin-Ju Lim;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.323-327
    • /
    • 2024
  • The low-temperature coefficient of resistance (TCR) is a crucial factor in the development of space-grade resistors for temperature stability. Consequently, extensive research is underway to achieve zero TCR. In this study, resistors were deposited by co-sputtering nickel-chromium-based composite compositions, metals showing positive TCR, with SiO2, introducing negative TCR components. It was observed that achieving zero TCR is feasible by adjusting the proportion of negative TCR components in the deposited thin film resistors within certain compositions. Additionally, the correlation between TCR and deposition conditions, such as sputtering power, Ar pressure, and surface roughness, was investigated. We anticipate that these findings will contribute to the study of resistors with very low TCR, thereby enhancing the reliability of space-level resistors operating under high temperatures.

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.