• Title/Summary/Keyword: Tuning Factor

Search Result 190, Processing Time 0.024 seconds

A Study on Tuning Factor(δ) and Quality Factor(Q) Values in Design of Single-Tuned Passive Harmonic Filters (단일동조 수동고조파필터 설계시의 동조계수(δ) 및 양호도(Q)값 연구)

  • Cho, Young-Sik;Cha, Han-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.64-70
    • /
    • 2010
  • This paper presents how to decide on tuning factor(${\delta}$) and quality factor(Q) values in design of single-tuned passive harmonic filters. Tuning factor(${\delta}$) and quality factor(Q) values have to consider before decision on circuit parameters of passive filters. A Study on these two value has not been scarcely performed and only experienced values has been used in passive harmonic filter design by far. As a experienced value, in cases of 5th and 7th filter, tuning factor(${\delta}$) is about 0.94 and 0.96 respectively and quality factor(Q) is, in all cases of, 50. If Single-tuned passive harmonic filter will be off-tuned, performance of filter will be decreased steeply and occur to parallel resonance between system reactance and filter capacitance. Therefore During the operation, In order not to off-tuning, Filter must be tuned at former order than actual tuning order. This is the same that total impedance of filter must have a reactive impedance. In this paper, Tuning factor(${\delta}$) is decided via example of real system and using the bode-plot and then performance of filters confirmed by filter current absorbtion rate. And Quality factor(Q) decided using the bode plot in example system and then performance of filters confirmed by filter current absorbtion rate also, which makes a calculated filter parameters to satisfy IEEE-519 distortion limits. Finally, Performance of the designed passive harmonic filter using the tuning factor(${\delta}$) and quality factor(Q) values, decided in this paper is verified by experiment and shows that 5th, 7th, 9th, 11th and 13th current harmonic distortions are decreased within IEEE-519 distortion limits, respectively.

Scaling Factor Tuning Method for Fuzzy Control System (퍼지제어 시스템을 위한 이득동조 방법)

  • 최한수;김성중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.819-826
    • /
    • 1994
  • This paper deals with a self-tuning fuzzy controller. The fuzzy controller is constructed with linguistic rules which consist of the fuzzy sets. Each fuzzy set is characterized by a membership function. The tuning fuzzy controller has paramenters that are input/output scaling factors to effect control output. In this paper we propose a tuning method for the scaling factor Computer simulations carried out on first-order and second-order processes will show how the present tuning approach improves the transient and the steady-state characteristics of the overall system.The applicability of the proposed algorithm is certified by computer simulation results.

The Design of IMC-PID Controller Considering a Phase Scaling Factor (위상 조절 인자를 고려한 IMC-PID 제어기의 설계)

  • Kim, Chang-Hyun;Lim, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1618-1623
    • /
    • 2008
  • In this paper, a new design method for IMC-PID that adds a phase scaling factor of system identifications to the standard IMC-PID controller as a control parameter is proposed. Based on analytically derived frequency properties such as gain and phase margins, this tuning rule is an optimal control method determining the optimum values of controlling factors to minimize the cost function, integral error criterion of the step response in time domain, in the constraints of design parameters to guarantee qualified frequency design specifications. The proposed controller improves existing single-parameter design methods of IMC-PID in the inflexibility problem to be able to consider various design specifications. Its effectiveness is examined by a simulation example, where a comparison of the performances obtained with the proposed tuning rule and with other common tuning rules is shown.

Simple fiber tip assembly with flexible Quality factor (유연한 Quality factor가 가능한 단순한 광섬유 팁 공진 구조물)

  • 나경필;권오대
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.260-261
    • /
    • 2002
  • For Near-field Scanning Optical Microscopy measurements, the fiber tip is glued on the side of one of the tuning fork prongs vertically to its extended direction. Higher Q-factor is attainable in this geometry than in the arrangement with the fiber tip parallel to the prong. A simple mechanical design is applied to hold the fiber tip above the gluing point. The overall tuning fork-fiber tip assembly gives another advantage of the flexible Q-factor enhancement. With this treatment, Q-factor higher than 3000 is easily achievable. As an operating instance, a grating is scanned for its one dimensional topographical image.

  • PDF

Frequency Control of Hydro Power Plant Based on Automatic Tuning Controller (자동 동조 퍼지 제어기를 이용한 수력발전소 주파수 제어)

  • Lee, Seon-Geun;Lee, Won-Yong;Shin, Dong-Ryul;Kwon, Oh-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.251-253
    • /
    • 1993
  • This paper proposes an automatic tuning fuzzy controller for frequency control of a hydro power plant (HPP). The proposed automatic tuning fuzzy controller consists of fuzzy control part and scaling factor calculation part. Scaling factor tuning is based on the concept of conventional tuning rules for the PI controller. The proposed controller was evaluated by simulation. Good results have been obtained for the 5kW model HHP.

  • PDF

Self-Tuning Method for Fuzzy Controller (퍼지제어기의 자기동조 방법에 관한 연구)

  • Choi, Han-Soo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.218-220
    • /
    • 1993
  • This paper deals with a self-tuning fuzzy controller. The fuzzy controller is constructed with linguistic rules which consist of the fuzzy variables and fuzzy sets. Each of fuzzy sets is characterized by a membership function. The tuning fussy controller has paramemters to effect control output. In this paper we propose tuning method for the scaling factor. Computer simulations carried out on a second-order process will show how the present tuning approach improves the transient and steady-state characteristics of the overall system.

  • PDF

Fuzzy Control Method By Automatic Scaling Factor Tuning (자동 양자이득 조정에 의한 퍼지 제어방식)

  • 강성호;임중규;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2807-2810
    • /
    • 2003
  • In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.

  • PDF

Resonance Frequency and Quality Factor Tuning in Electrostatic Actuation of Nanoelectromechanical Systems

  • Kim, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1711-1719
    • /
    • 2005
  • In an electro statically actuated nanoelectromechanical system (NEMS) resonator, it is shown that both the resonance frequency and the resonance quality (Q) factor can be manipulated. How much the frequency and quality factor can be tuned by excitation voltage and resistance on a doubly-clamped beam resonator is addressed. A mathematical model for investigating the tuning effects is presented. All results are shown based on the feasible dimension of the nanoresonator and appropriate external driving voltage, yielding up to 20 MHz resonance frequency. Such parameter tuning could prove to be a very convenient scheme to actively control the response of NEMS for a variety of applications.

Dithering Sample Stage Based Near-field Scanning Optical Microscope

  • Park, Gyeong-Deok;Jeong, Mun-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.559-559
    • /
    • 2012
  • We developed a new scheme for the highly sensitive near-field scanning optical microscope (NSOM) by using a dithering sample stage rather than a dithering probe. In the proposed scheme, the sample is directly loaded on one prong surface of a dithering bare tuning fork. Gap control between probe and sample is performed by detecting the shear force between an immobile fiber probe and the dithering sample. In a conventional NSOM, the Q factor drastically decreases from 7783 to 1000 or even to 100 by attaching a probe to the tuning fork. In our proposed NSOM, on the contrary, the Q factor does not change significantly, 7783 to 7480, when the sample is loaded directly to the tuning fork instead of attaching a probe. Consequently, the graphene sheets that cannot be observed by a conventional NSOM were clearly observed by the proposed method with sub-nanometer vertical resolution due to the extremely high Q factor.

  • PDF

Adaptive Fuzzy Logic Control for Sight Stabilization System (조준경 안정화 장치의 적응 퍼지 논리 제어)

  • 소상호;김도종;박동조;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.63-66
    • /
    • 1997
  • The rule bases self organizing controller(SOC) has one of its main advantages in the fact that there is no need to have a mathematical description of the system to be controlled. In this controller, the rules are linguistics statements expressed mathematically through the concepts of fuzzy sets and correspond to the actions a human operator would take when controlling a given process. With this controller, we have performed to sight stabilization system, and we realize that it needs a scale factor tuning. The self tuning controller(STC) uses an instantaneous system fuzzy performance which can give an inspection to the scale factor. Therefore, the STC can compensate the scale factor when it is not adequately tuned. With this trial, we shows that STC can give a good transient characteristics in the nonlinearity which imposed basically in the conventional servo system.

  • PDF