• Title/Summary/Keyword: Tunicamycin (Tm)

Search Result 11, Processing Time 0.03 seconds

Effect of Tunicamycin on the Cell Growth and ${\alpha}-Amylase$ Production of Bacillus amyloliquefaciens K (Bacillus amyloliquefaciens k의 생육(生育)과 ${\alpha}-Amylase$ 생산(生産)에 대한 Tunicamycin의 영향(影響))

  • Kim, Ki-Cheul;Yamaski, Makari;Takatsuki, Akira;Tamura, Gakuzo
    • Applied Biological Chemistry
    • /
    • v.24 no.4
    • /
    • pp.252-259
    • /
    • 1981
  • The effects of tunicamycin (TM) on the growth and ${\alpha}-amylase$ productivity of B. amyloliquefaciens K were studied. The minimal growth inhibitory concentration was $0.25{\mu}\textrm{g}/m\ell$ and its ${\alpha}-amylase$ was stable up to $50^{\circ}C$. When the saking culture with $1{\mu}\textrm{g}/m\ell$ of Tunicamycin caused the change of cell shape from form rod to irregular circular form and the mycelium lysis. the grow th of His-, $TM^{\tau}$ mutant obtained by treatment of TM and ultraviolet ray was similar to that of the parent strain, but the productivity of ${\alpha}-amylase$, protease, and RNase was lower than that of the parent.

  • PDF

Tunicamycin-Induced ER Stress Upregulates the Expression of Mitochondrial HtrA2 and Promotes Apoptosis Through the Cytosolic Release of HtrA2

  • Han, Chul;Nam, Min-Kyung;Park, Hyo-Jin;Seong, Young-Mo;Kang, Seong-Man;Rhim, Hyang-Shuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1197-1202
    • /
    • 2008
  • Recent studies provide some evidence that the HtrA2 protein is intimately associated with the pathogenesis of neurodegenerative disorders and that endoplasmic reticulum (ER) quality control and ER stress-associated cell death play critical roles in neuronal cell death. However, little is known about the intimate relationship between HtrA2 and ER stress-associated cellular responses. In the present study, we have demonstrated that the HtrA2 protein level was gradually and significantly increased by up to to-fold in the mitochondria under tunicamycin (Tm)-induced ER stress, which eventually promoted cell death through the release of HtrA2 into the cytoplasm. Using an ecdysone-inducible mammalian expression system, we demonstrate that the extent of cell death in 293-HtrA2 cells was approximately 20 times higher under Tm-induced ER stress, indicating that the increase in the HtrA2 protein level in the mitochondria itself is necessary but not sufficient for the promotion of cell death. Taken together, these results suggest that HtrA2 may serve as a mediator of ER stress-induced apoptosis and ER-mitochondrial cross-talk in some cellular processes.

Inhibitory Effects of Litsea japonica Flesh Water Extract against Endoplasmic Reticulum Stress in HepG2 Cells (HepG2 세포에서 까마귀쪽나무 과육 열수 추출물의 소포체 스트레스 억제 효능)

  • Kim, Eun Ok;Jegal, Kyung Hwan;Kim, Jae Kwang;Lee, Ju Sang;Park, Chung A;Kim, Sang Chan;Cho, Il Je
    • Herbal Formula Science
    • /
    • v.26 no.4
    • /
    • pp.307-318
    • /
    • 2018
  • Objectives : Endoplasmic reticulum (ER) stress designates cellular responses to the accumulation of misfolded and unfolded proteins in ER, which is related to a variety of liver diseases. Present study investigated the inhibitory effects of Litsea japonica flesh water extract (LJE) aganist ER stress. Methods : After HepG2 cells were pretreated with LJE and subsequently exposed to tunicamycin (Tm) or thapsigargin (Tg), expression of C/EBP homologous protein (CHOP), glucose regulated protein 78 kDa (GRP78), asparagine synthetase (ASNS), and endoplasmic reticulum DnaJ homologue 4 (ERDJ4) were determined by immunoblot and real-time PCR analysis. Three canonical signaling pathways in response to ER stress were examined to explore molecular mechanisms involved. Results : Pretreatment of 1 mg/mL LJE inhibited Tm- or Tg-induced CHOP expression, while L. japonica fruit water extract did not. In addition, LJE decreased the levels of GRP78, ASNS, and ERDJ4 mRNA by Tm. Moreover, phosphorylations of eukaryotic translation initiation factor $2{\alpha}$ and inositol-requiring enzyme 1, expression of nuclear form of activating transcription factor $6{\alpha}$, and transactivation of ER stress response element- and unfolded protein response element-harboring luciferase activities were inhibited by LJE pretreatment. Conclusions : Present results suggest that LJE would be a candidate to prevent or treat ER stress-mediated liver injuries.

Nucleotide-binding oligomerization domain protein 2 attenuates ER stress-induced cell death in vascular smooth muscle cells

  • Kwon, Min-Young;Hwang, Narae;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.665-670
    • /
    • 2019
  • Nucleotide-binding oligomerization domain protein 2 (NOD2), an intracellular pattern recognition receptor, plays important roles in inflammation and cell death. Previously, we have shown that NOD2 is expressed in vascular smooth muscle cells (VSMCs) and that NOD2 deficiency promotes VSMC proliferation, migration, and neointimal formation after vascular injury. However, its role in endoplasmic reticulum (ER) stress-induced cell death in VSMCs remains unclear. Thus, the objective of this study was to evaluate ER stress-induced viability of mouse primary VSMCs. NOD2 deficiency increased ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) in VSMCs in the presence of tunicamycin (TM), an ER stress inducer. In contrast, ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) were decreased in NOD2-overexpressed VSMCs. We found that the $IRE-1{\alpha}-XBP1$ pathway, one of unfolded protein response branches, was decreased in NOD2-deficient VSMCs and reversed in NOD2-overexpressed VSMCs in the presence of TM. Furthermore, NOD2 deficiency reduced the expression of XBP1 target genes such as GRP78, PDI-1, and Herpud1, thus improving cell survival. Taken together, these data suggest that the induction of ER stress through NOD2 expression can protect against TM-induced cell death in VSMCs. These results may contribute to a new paradigm in vascular homeostasis.

Supplement of tauroursodeoxycholic acid in vitrification solution improves the development of mouse embryos

  • Lin, Tao;Lee, Jae-Eun;Shin, Hyun-Young;Oqani, Reza;Kim, So-Yeon;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.575-580
    • /
    • 2016
  • This study was performed to determine whether supplementation of tauroursodeoxycholic acid (TUDCA), an endoplasmic reticulum (ER) stress inhibitor, during vitrified cryopreservation enhances the development of frozen mouse embryos. Mouse 8-cell stage embryos were collected and exposed to a cryoprotectant solution containing TUDCA or TM (tunicamycin, an ER stress inhibitor) at room temperature and stored in liquid nitrogen following vitrification. The final concentration of TUDCA or TM was $50{\mu}M$. The survival and development rates of mouse 8-cell stage embryos exposed to TUDCA- or TM-containing solutions at room temperature or stored in liquid nitrogen following vitrification were measured. There were no significant differences in survival rate and blastocyst formation rate among control, TUDCA, and TM groups after embryos were exposed to vitrification solutions at RT. When mouse 8-cell stage embryos were treated with TUDCA or TM and then stored in liquid nitrogen, the survival rates of control and TUDCA groups were significantly higher than for the TM group. Blastocyst formation rate of the TUDCA group following in vitro culture was significantly higher than that in control or TM groups. The TM group showed a lower (p < 0.05) blastocyst formation rate than the other two groups. Our results indicate that TUDCA supplementation during cryopreservation of mouse embryos could enhance their development capacity.

Multiple Chromosomal Integration of a Bacillus Ya-B Alkaline Elastase Gene (고초균(Bacillus) 염색체상에서 외래 유전자 Alkaline Elastase Gene의 증폭)

  • 김병문;정봉현
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.544-549
    • /
    • 1995
  • The alkaline elastase is an extracellular serine protease of the alkalophilic Bacillus strain Ya-B. To increase the gene copy number and the production level of the alkaline elastase Ya-B, we designed, on the B. subtilis chromosome, a gene amplification of the 10.6 kb repeating unit containing amyE, aleE (alkaline elastase Ya-B gene) and tmrB. The aleE was inserted between amyE and tmrB, and B. subtilis APT119 strain was transformed with this amyE-aleE-tmrB-junction region fragment. As a result, we succeeded in obtaining tunicamycin-resistant (Tm$^{r}$) transformants (Tf-1, Tf-2) in which the designed gene amplification of 10.6 kb occurred in chromosome. The transformants showed high productivity of $\alpha $-amylase and alkaline elastase Ya-B. The copy number of the repeating unit (amyE-aleE-tmrB) was estimated to be 25, but plasmid vector (pUC19) was not integrated. The amplified aleE of chromosome was more stable than that of plasmid in absence of antibiotics.

  • PDF

Correlation between Sestrin-2 and PERK Signaling in Matured Porcine Oocytes according to ER-stress during In Vitro Maturation

  • Park, Hyo-Jin;Kim, In-Su;Kim, Jin-Woo;Yang, Seul-Gi;Kim, Min-Ji;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.212-221
    • /
    • 2019
  • Sestrin-2 (SESN2) as a stress-metabolic protein is known for its anti-oxidative effects as a downstream factor of PERK pathways in mammalian cells. However, the expression patterns of SESN2 in conjunction with the UPR signaling against to ER stress on porcine oocyte maturation in vitro, have not been reported. Therefore, we confirmed the expression pattern of SESN2 protein, for which to examine the relationship between PERK signaling and SESN2 in porcine oocyte during IVM. We investigated the SESN2 expression patterns using Western blot analysis in denuded oocytes (DOs), cumulus cells (CCs), and cumulus-oocyte complexes (COCs) at 22 and 44 h of IVM. As expected, the SESN2 protein level significantly increased (p < 0.01) in porcine COCs during 44 h of IVM. We investigated the meiotic maturation after applying ER stress inhibitor in various concentration (50, 100 and 200 μM) of tauroursodeoxycholic acid (TUDCA). We confirmed significant increase (p < 0.05) of meiotic maturation rate in TUDCA 200 μM treated COCs for 44 h of IVM. Finally, we confirmed the protein level of SESN2 and meiotic maturation via regulating ER-stress by only tunicamycin (Tm), only TUDCA, and Tm + TUDCA treatment in porcine COCs. As a result, treatment of the TUDCA following Tm pre-treatment reduced SESN2 protein level in porcine COCs. In addition, SESN2 protein level significantly reduced in only TUDCA treated porcine COCs. Our results suggest that the SESN2 expression is related to the stress mediator response to ER stress through the PERK signaling pathways in porcine oocyte maturation.

Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Enhancement of Antioxidant Activities (Amomum villosum var. xanthioides의 에틸아세테이트 분획물이 항산화 활성을 통한 간 소포체 스트레스 유발 비알코올성 지방간 저해)

  • Eun Jung Ahn;Su Young Shin;Seung Young Lee;Chang-Min Lee;Kyung-Min Choi;Jin-Woo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.60-60
    • /
    • 2021
  • Non-alcoholic fatty liver disease (NAFLD), especially including non-alcoholic steatohepatitis (NASH) is one of the common diseases with 25% of prevalence globally, but there is no thera-peutic access available. Amomum villosum var. xanthioides (Wall. ex Baker) T.L.Wu & S.J.Chen (AX), which is a medicinal herb and traditionally used for treating digestive tract disorders in Asia countries. We aimed to examine pharmacological effects of ethyl acetate fraction of AX (AXEF) against ER stress-induced NASH mice model using C57/BL6J male mice by tunicamycin (TM, 2 mg/kg) injection focusing on the oxidative stress. Mice were orally administrated AXEF (12.5, 25, or 50 mg/kg), silymarin (50 mg/kg) or distilled water daily for 5 days, and outcomes for fatty liver, inflammation, and oxidative stress were measured in serum or liver tissue levels. AXEF drastically attenuated hepatic ER stress-induced NASH which were evidenced by decreases of li-pid droplet accumulations, serum liver enzymes, hepatic inflammations, and cell death signals in the hepatic tissue or serum levels. Interestingly, AXEF showed potent antioxidant effects by quenching of reactive oxidative stress and its final product of lipid peroxide in the hepatic tissue, specifically increase of metallothionein (MT). To confirm underlying actions of AXEF, we ob-served that AXEF increase MT1gene promoter activities in the physiological levels. Collectively, AXEF showed antioxidant properties on TM-induced ER stress of NASH by enhancement of MTs.

  • PDF

miR-185 inhibits endoplasmic reticulum stress-induced apoptosis by targeting Na+/H+ exchanger-1 in the heart

  • Kim, Jin Ock;Kwon, Eun Jeong;Song, Dong Woo;Lee, Jong Sub;Kim, Do Han
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.208-213
    • /
    • 2016
  • Prolonged ER stress (ERS) can be associated with the induction of apoptotic cell death in various heart diseases. In this study, we searched for microRNAs affecting ERS in the heart using in silico and in vitro methods. We found that miR-185 directly targets the 3′-untranslated region of Na+/H+ exchanger-1 (NHE-1), a protein involved in ERS. Cardiomyocyte ERS-triggered apoptosis induced by 100 ng/ml tunicamycin (TM) or 1 μM thapsigargin (TG), ERS inducers, was significantly reduced by miR-185 overexpression. Protein expression of pro-apoptotic markers such as CCAAT/enhancer-binding protein homologous protein (CHOP) and cleaved-caspase-3 was also markedly reduced by miR-185 in a dose-dependent manner. Cariporide (20 μM), a pharmacological inhibitor of NHE-1, also attenuated ERS-induced apoptosis in cardiomyocytes and CHOP protein expression, suggesting that NHE-1 plays an important role in ERS-associated apoptosis in cardiomyocytes. Collectively, the present results demonstrate that miR-185 is involved in cardio-protection against ERS-mediated apoptotic cell death.

Analysis of Endoplasmic Reticulum (ER) Stress Induced during Somatic Cell Nuclear Transfer (SCNT) Process in Porcine SCNT Embryos

  • Lee, Hwa-Yeon;Bae, Hyo-Kyung;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.22 no.1
    • /
    • pp.73-83
    • /
    • 2018
  • This study investigates the endoplasmic reticulum (ER) stress and subsequent apoptosis in duced during somatic cell nuclear transfer (SCNT) process of porcine SCNT embryos. Porcine SCNT and in vitro fertilization (IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA and the expressions of ER stress-associated genes were confirmed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer, confirmed the splicing of Xbp1 mRNA and increased expressions of ER stress-associated genes. In all the embryonic stages, the SCNT embryos, when compared with the IVF embryos, showed slightly increased expression of spliced Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated genes (p<0.05). In all stages, apoptotic gene expression was slightly higher in the SCNT embryos, but not significantly different from that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage (p<0.05). The result of this study indicates that excessive ER stress can be induced by the SCNT process, which induce apoptosis of SCNT embryos.