• 제목/요약/키워드: Tungsten diselenide

검색결과 7건 처리시간 0.022초

Effect of Phonons on Valley Depolarization in Monolayer WSe2

  • Chellappan, Vijila;Pang, Ai Lin Christina;Sarkar, Soumya;Ooi, Zi En;Goh, Kuan Eng Johnson
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.766-773
    • /
    • 2018
  • In this paper, temperature dependence of the excitonic bands in a mechanically exfoliated tungsten diselenide ($WSe_2$) monolayer is studied using photoluminescence and circular dichroic photoluminescence (PL) in the temperature range between 8 and 300 K. The peak energies associated with the neutral exciton (A), charged exciton (trion) and localized excitons are extracted from the PL spectra revealing a trion binding energy of around 30 meV. The circular dichroic PL measured at 8 K shows about 45% valley polarisation that sharply reduces with increasing temperature to 5% at 300 K with photoexcitation energy of 1.96 eV. A detailed analysis of the emission line-width suggests that the rapid decrease of valley polarisation with the increase of temperature is caused by the strong exciton-phonon interactions which efficiently scatter the excitons into different excitonic states that are easily accessible due to the supply of excess photoexcitation energy. The emission line-width broadening with the increase of temperature indicate residual exciton dephasing lifetime < 100 fs, that correlates with the observed rapid valley depolarisation.

Effects of metal contacts and doping for high-performance field-effect transistor based on tungsten diselenide (WSe2)

  • Jo, Seo-Hyeon;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.294.1-294.1
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with two-dimensional layered structure, such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), are considered attractive materials for future semiconductor devices due to its relatively superior electrical, optical, and mechanical properties. Their excellent scalability down to a monolayer based on the van der Waals layered structure without surface dangling bonds makes semiconductor devices based on TMD free from short channel effect. In comparison to the widely studied transistor based on MoS2, researchs focusing on WSe2 transistor are still limited. WSe2 is more resistant to oxidation in humid ambient condition and relatively air-stable than sulphides such as MoS2. These properties of WSe2 provide potential to fabricate high-performance filed-effect transistor if outstanding electronic characteristics can be achieved by suitable metal contacts and doping phenomenon. Here, we demonstrate the effect of two different metal contacts (titanium and platinum) in field-effect transistor based on WSe2, which regulate electronic characteristics of device by controlling the effective barreier height of the metal-semiconductor junction. Electronic properties of WSe2 transistor were systematically investigated through monitoring of threshold voltage shift, carrier concentration difference, on-current ratio, and field-effect mobility ratio with two different metal contacts. Additionally, performance of transistor based on WSe2 is further enhanced through reliable and controllable n-type doping method of WSe2 by triphenylphosphine (PPh3), which activates the doping phenomenon by thermal annealing process and adjust the doping level by controlling the doping concentration of PPh3. The doping level is controlled in the non-degenerate regime, where performance parameters of PPh3 doped WSe2 transistor can be optimized.

  • PDF

2D transition-metal dichalcogenide (WSe2) doping methods for hydrochloric acid

  • Nam, Hyo-Jik;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.291.2-291.2
    • /
    • 2016
  • 3D semiconductor material of silicon that is used throughout the semiconductor industry currently faces a physical limitation of the development of semiconductor process technology. The research into the next generation of nano-semiconductor materials such as semiconductor properties superior to replace silicon in order to overcome the physical limitations, such as the 2-dimensional graphene material in 2D transition-metal dichalcogenide (TMD) has been researched. In particular, 2D TMD doping without severely damage of crystal structure is required different conventional methods such as ion implantation in 3D semiconductor device. Here, we study a p-type doping technique on tungsten diselenide (WSe2) for p-channel 2D transistors by adjusting the concentration of hydrochloric acid through Raman spectroscopy and electrical/optical measurements. Where the performance parameters of WSe2 - based electronic device can be properly designed or optimized. (on currents increasing and threshold voltage positive shift.) We expect that our p-doping method will make it possible to successfully integrate future layered semiconductor devices.

  • PDF

폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가 (Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules)

  • 김찬휘;조수연;김형태;이원주;박준홍
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.255-260
    • /
    • 2023
  • 분자 단위의 폭발물질을 탐지하기 위하여, 고감도 응답성 센서의 개발이 요구되고 있다. 2차원 반도체는 얇은 적층형 구조를 가져 전하 캐리어가 축적될 수 있어, 전하 캐리어의 급격한 신호 변조 특성을 기대할 수 있다. WSe2 반도체 소재의 TNT(Trinitrotoluene) 폭발물질에 대한 탐지 효용성을 연구하기 위해, CVD(Chemical Vapor Deposition) 공정을 이용해 WSe2 박막을 합성하여 FET(Field Effect Transistors)을 제작하였다. 라만 분석과 FT-IR(Fourier-transform infrared) 분광 결과는 TNT 분자의 흡착과 WSe2 결정질의 구조적 전이 분석 정보를 나타내었다. 또한, WSe2 표면의 TNT 분자 흡착 전후의 전기적 특성을 비교하였다. TNT 도포 전, WSe2 FET에 백 게이트 바이어스로 -50 V를 인가함에 따라 0.02 μA의 최대 전류 값이 관측되었고, 0.6%(w/v) TNT 용액을 도포하였을 때 Drain 전류는 p-type 거동을 보이면서 0.41 μA의 최대 전류 값을 기록하였다. 이후 On/Of f Ratio 및 캐리어 이동도, 히스테리시스를 추가적으로 평가하였다. 본 연구에서는 WSe2의 TNT 분자에 대한 고감도와 신속한 응답성을 통해 폭발물질 탐지 센서 소재로서의 가능성을 제시하였다.

Two-dimensional heterostructures for All-2D Electronics

  • 이관형
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.100-100
    • /
    • 2016
  • Among various two-dimensional (2D) materials, 2D semiconductors and insulators have attracted a great deal of interest from nanoscience community beyond graphene, due to their attractive and unique properties. Such excellent characteristics have triggered highly active researches on 2D materials, such as hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), and tungsten diselenide (WSe2). New physics observed in 2D semiconductors allow for development of new-concept devices. Especially, these emerging 2D materials are promising candidates for flexible and transparent electronics. Recently, van der Waals heterostructures (vdWH) have been achieved by putting these 2D materials onto another, in the similar way to build Lego blocks. This enables us to investigate intrinsic physical properties of atomically-sharp heterostructure interfaces and fabricate high performance optoelectronic devices for advanced applications. In this talk, fundamental properties of various 2D materials will be introduced, including growth technique and influence of defects on properties of 2D materials. We also fabricate high performance electronic/optoelectronic devices of vdWH, such as transistors, memories, and solar cells. The device platform based on van der Waals heterostructures show huge improvement of devices performance, high stability and transparency/flexibility due to unique properties of 2D materials and ultra-sharp heterointerfaces. Our work paves a new way toward future advanced electronics based on 2D materials.

  • PDF

Improvement Performance of Graphene-MoS2 Barristor treated by 3-aminopropyltriethoxysilane (APTES)

  • 오애리;심재우;박진홍
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.291.1-291.1
    • /
    • 2016
  • Graphene by one of the two-dimensional (2D) materials has been focused on electronic applications due to its ultrahigh carrier mobility, outstanding thermal conductivity and superior optical properties. Although graphene has many remarkable properties, graphene devices have low on/off current ratio due to its zero bandgap. Despite considerable efforts to open its bandgap, it's hard to obtain appropriate improvements. To solve this problem, heterojunction barristor was proposed based on graphene. Mostly, this heterojunction barristor is made by transition metal dichalcogenides (TMDs), such as molybdenum disulfide ($MoS_2$) and tungsten diselenide ($WSe_2$), which have extremely thickness scalability of TMDs. The heterojunction barristor has the advantage of controlling graphene's Fermi level by applying gate bias, resulting in barrier height modulation between graphene interface and semiconductor. However, charged impurities between graphene and $SiO_2$ cause unexpected p-type doping of graphene. The graphene's Fermi level modulation is expected to be reduced due to this p-doping effect. Charged impurities make carrier mobility in graphene reduced and modulation of graphene's Fermi level limited. In this paper, we investigated theoretically and experimentally a relevance between graphene's Fermi level and p-type doping. Theoretically, when Fermi level is placed at the Dirac point, larger graphene's Fermi level modulation was calculated between -20 V and +20 V of $V_{GS}$. On the contrary, graphene's Fermi level modulation was 0.11 eV when Fermi level is far away from the Dirac point in the same range. Then, we produced two types heterojunction barristors which made by p-type doped graphene and graphene treated 2.4% APTES, respectively. On/off current ratio (32-fold) of graphene treated 2.4% APTES was improved in comparison with p-type doped graphene.

  • PDF

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF