• Title/Summary/Keyword: Tungsten Carbide (WC)

Search Result 134, Processing Time 0.028 seconds

Hydrogen Production from Ammonia Decomposition over Transition Metal Carbides (전이금속 카바이드를 이용한 암모니아 분해 반응으로부터 수소생산)

  • CHOI, EUI-JI;CHOI, JEONG-GIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • The preparation and catalytic activities of various transition metal carbide crystallites (VC, MoC, WC) were examined in this study. In particular, the effect of different kinds of transition metal crystallites were scrutinized on the ammonia decomposition reaction. The experimental results showed that BET surface areas ranged from $8.3m^2/g$ to $36.3m^2/g$ and oxygen uptake values varied from $9.1{\mu}mol/g$ to $25.4{\mu}mol/g$. Amongst prepared transition metal carbide crystallites, tungsten compounds (WC) were observed to be most active for ammonia decomposition reaction. The main reason for these results were considered to be related to the extent of electronegativity between these materials. Most of transition metal carbide crystallites were exceeded by Pt/C crystallite. However, the steady state reactivities for some of transition metal carbide crystallites (WC) were comparable to or even higher than that determined for the Pt/C crystallite.

Selective Laser Sintering of WC-Co Mixture (텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결)

  • 김광희;조셉비만
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.269-274
    • /
    • 2001
  • This paper describes the experimental results on direct selective laser sintering of WC-Co mixture. The experiments were carried out within an air, argon and nitrogen atmosphere. The main problem occurred during sintering within an air atmosphere was oxidation of WC-Co mixture. As the power of laser is increased and scanning speed is decreased, more severe oxidation takes place. Within an argon and nitrogen atmosphere the oxidation is reduced significantly. As the energy density is increased the thickness of the sintered layer is increased.

  • PDF

Characteristics of Pt thin films on WC for glass lens molding (유리렌즈 성형용 초경합금의 Pt 박막의 특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Yung;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.62-67
    • /
    • 2009
  • Pt thin films on Cr or Ti interlayer were deposited onto a tungsten carbide(WC) substrate by the ion beam assisted DC magnetron sputtering. The various atomic percent of Cr and Ti underneath of the Pt films were prepared to examine the total thin film characteristics. The microstructure and surface analysis of the specimen were conducted by using the SEM, XRD and AFM. Mechanical properties such as hardness and adhesion strength of Pt thin film also were examined. The interlayer of pure Ti was formed with 40 nm thickness while that of pure Cr was done with 50 nm as standard reference. The growth rate of either Cr or Ti thin film was almost same under the same deposition conditions. The SEM images showed that anisotropic grain of Pt thin films consisting of dense columnar structures irrespectively grew from the different target compositions. The values of hardness and adhesion strength of Cr/Pt thin film coated on a WC substrate were higher than those of Ti/Pt thin film.

  • PDF

Wear Behavior of WC-12%Co/Low Carbon Steel Metal Matrix Composites(MMC) Welding Overlay (WC-12%Co/저탄소강 MMC 용접 오버레이의 마모거동)

  • 임희식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.42-49
    • /
    • 2003
  • The protection of steel surfaces against wear is a practical problem far agricultural, mining and manufacturing industries. Commercial processes are available in which a hard tungsten carbides rich steel layer is formed on the surface of carbon steel digging, drilling and gouging tools to improve their wear resistance. The nature of the interaction of the tungsten carbide with the steel matrix is important in determining the wear and corrosion properties of the resulting metal matrix composites(MMC). In the study, WC-12%Co/low carbon steel MMC overlays have been prepared by gas metal arc welding(GMAW) according to size of WC-12%Co grits. The characteristics wear resistance and wear mechanism have been investigated in relation to the experiment conditions each other. After MMC overlay had been tested by rubber wheel abrasion test, it was known that MMC overlay has a excellent wear resistance. Fe$_{6}$W$_{6}$C carbides of matrix in overlays were not important to restrain rubber wheal abrasion wear. Wear loss is proportioned to a applied load according to time. On the case of low load, wear occurred severely in the matrix of overlay more than WC-12%Co grit, on the contrary it is reverse on the case of high load because of fracture of WC-12%Co grits.its.

Development of Higher Wear Resistance WC Roll for Finishing Stands of Wire Rod Mill (선재 사상압연용 고내마모 텅스템카비아드롤 개발)

  • 이영민;조용근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.272-278
    • /
    • 1999
  • Tungsten Carbide(WC) Roll is widely used in finishing stands of wire rod mill. This report is about the manufacturing method of WC roll with excellent wear resistance. To enhance wear resistance, WC content has been increased to the maximum extent while binder content such as Co, Ni, Cr has been minimized. Part of WC is replaced with TiC having more wear resistant than WC. WTiC powder has been used to prevent weight unbalance resulting from the difference of specific weight when adding TiC. The roll manufactured by this method, is having more wear resistance than the existing rolls when applying to the final stand of the finishing mill. This report shows that WC is the critical factor of wear resistance in WC rolls and an approprite amount of TiC effects wear resistance and when adding TiC, using WTiC powder is better.

  • PDF

Coating Effect of Molding Core Surface by DLC and Re-Ir Coating (DLC 및 Re-Ir 코팅에 의한 성형용 코어면의 코팅 효과)

  • Kim, Hyun-Uk;Cha, Du-Hwan;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding and coating technology for the molding core surface are required. This study investigates the effect of diamond-like carbon (DLC) and rhenium-iridium (Re-Ir) coating For aspheric molding core surface. The grinding conditions of the tungsten carbide molding core were obtained by design of experiments (DOE) for application in the ultra precision grinding process of the tungsten carbide molding core of the aspheric glass lens used in 5 megapixel, $4{\times}$ zoom camera phone modules. A tungsten carbide molding core was fabricated under this grinding condition and coated with the DLC and Re-Ir coating. By measurements, the effect of DLC and Re-Ir coating on the form accuracy and surface roughness of molding coer was evaluated.

Oxidation Behavior of WC-Co Hardmetal (WC-Co 초경합금의 산화거동)

  • 이길근;권한상;하국현
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 2004
  • The oxidation behavior of 91 WC-9Co hardmetal in weight percentage has been studied in the present work as a part of the development of recycling process. The morphological and compositional changes of the WC-Co hardmetal with oxidation time at 90$0^{\circ}C$ were analyzed by using surface observation and X-ray diffraction. respective]y. As the oxidation time increased, the WC-Co hardmetal was continuously expanded to form porous oxide mixtures of $CoWO_4$ and $WO_3$. The morphology of porous oxide mixture was basically dependent on initial shape of the WC-Co hardmetal. From thermo-gravimetric (TG) analysis, it was found that the oxidation rate was increased with increasing oxidation temperature and oxygen content in the flowing atmospheric gas. The fraction of oxidation versus time curves showed S-curve relationship at a given of oxidation temperature. These oxidation behaviors of the WC-Co hardmetal were discussed in terms of previously proposed kinetic models.

Abrasion Wear Behavior of Recycled Tungsten Carbide Reinforced Metal Matrix Composite (재생 초경합금 분말을 활용한 금속기지 복합재료의 Abrasion 마모거동)

  • Kang, Nam-Hyun;Chae, Hyun-Byung;Kim, Jun-Ki;Choi, Jong-Ha;Kim, Jeong-Han
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.850-854
    • /
    • 2003
  • The abrasion wear behavior on the hardfacing weld was investigated by performing abrasion wear, hardness, and microstructural tests. The gas metal arc(GMA) weld was produced by using the cored wire which was filled with the hard metal, i.e., the recycled tungsten carbide (WC) reinforced metal matrix composite. For 30% addition of the hard metal, the abrasion wear resistance was significantly improved comparing with that for 20% addition of the hard metal. Above 30% addition of the hard metal, however, there was no significant improvement of the wear resistance. The improvement of the wear resistance was due to the increased amount of eutectic carbides(W$_{6}$C) which was formed during GMA welding. For the weld in which the hard metal was added to 30-40%, an optimum level of abrasion wear resistance was performed.