• Title/Summary/Keyword: Tunable elastic modulus

Search Result 4, Processing Time 0.014 seconds

Clinical Safety Evaluation of Interbody Fusion Cage Based on Tunable Elastic Modulus of the Cellular Structure According to the Geometrical Variables (형상학적 변수에 따른 다공성 구조의 가변탄성계수를 기반으로 한 추간체유합보형재의 임상적 안전성 평가)

  • Kim, SeongJin;Lee, YongKyung;Choi, Jaehyuck;Hong, YoungKi;Kim, JungSung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.158-164
    • /
    • 2019
  • The interbody fusion cage used to replace the degenerative intervertebral disc is largely composed of titanium-based biomaterials and biopolymer materials such as PEEK. Titanium is characterized by osseointergration and biocompatibility, but it is posed that the phenomenon such as subsidence can occur due to high elastic modulus versus bone. On the other hand, PEEK can control the elastic modulus in a similar to bone, but there is a problem that the osseointegration is limited. The purpose of this study was to implement titanium material's stiffness similar to that of bone by applying cellular structure, which is able to change the stiffness. For this purpose, the cellular structure A (BD, Body Diagonal Shape) and structure B (QP, Quadral Pod Shape) with porosity of 50%, 60%, 70% were proposed and the reinforcement structure was suggested for efficient strength reinforcement and the stiffness of each model was evaluated. As a result, the stiffness was reduced by 69~93% compared with Ti6Al4V ELI material, and the stiffness most similar to cortical bone is calculated with the deviation of about 12% in the BD model with 60% porosity. In this study, the interbody fusion cage made of Ti6Al4V ELI material with stiffness similar to cortical bone was implementing by applying cellular structure. Through this, it is considered that the limitation of the metal biomaterial by the high elastic modulus may be alleviated.

ER Smart Structures for Shock Wave Reduction (충격파 저감을 위한 ER 지능구조물)

  • 김재환;김지선;최승복;김경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.679-687
    • /
    • 2003
  • Shock wave reduction in electrorheological(ER) smart structures is studied. ER insert is a composite structure comprising two elastic outer layers between which is sandwiched layer of ER fluid. When a voltage is applied across the outer layers. the shear modulus and the loss factor of the ER fluid are enabled, and thus the dynamic properties of the composite structure is altered. For the shock wave reduction in a hull mount of a submerged structure, ER inserts are made on the hull mount structure. To investigate the ER insert shape. many types of ER insert pattern are considered. Modal test of ER insert structures is performed to obtain the mode shapes, natural frequencies and the acceleration transmissibility. The acceleration transmissibility is reduced at such a frequency region when an electric field is applied. It is observed that the natural frequencies and mode shapes can be tunable by applying electric field. The ER-inserted hull mount is installed in an integrated system and the overall performance of shock wave reduction is tested. The possibility of shock wave reduction in the hull mount is demonstrated.

Clay/Acrylamide Hydrogels Having Fucoidan (푸코이단을 함유한 Clay/아크릴아미드 하이드로젤)

  • Hwang, Sun-Ae;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.332-336
    • /
    • 2011
  • Hydrogels have been investigated due to their potential in a myriad of applications. The introduction of functional moiety such as sulfide has expanded their applicability. In this study, an investigation was carried out on the introduction of fucoidan into the hydrogels of clay/acrylamide. In the resulting semi-IPN nanocomposite hydrogels, the linear polysaccharide, fucoidan, has strong ionic interactions with clay. It was also confirmed from simple mixing tests that fucoidan can physically crosslink with clay without chemical crosslinks. In the semi-IPN hydrogels, equilibrium swelling ratio increased with the content of fucoidan. Elastic modulus increased with an initial increase in the content of fucoidan, and decreased with a further increase. The work of fracture results of these hydrogels showed their tough properties. These hydrogels could provide functional properties such as mucoadhesiveness with tunable hydrogel characteristics.

Investigation of Sound Pressure Detection of Fiber Optic Sensor in Transformer Oil According to TLS and CW Laser Source (TLS와 CW 광원에 따른 트랜스포머 오일 내에서 광섬유 센서의 음압 감지 특성 연구)

  • Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • To substitute TLS in the hybrid system which is combined with Sagnac interferometer and fiber bragg grating (FBG) it is necessary to investigate how the laser source (TLS and CW) and sensor material variate the response of fiber optic sensor. Two different hollow cylinder type mandrel materials are proposed which are PTFE and PTFE+carbon and 18 m optical fiber is wounded at the mandrel surface. CW laser source experiments had been done in the oil tank which is filled with transformer oil in the 1 kHz~20 kHz frequency range. Also Sagnac interferometer fiber optic sensor is combined with FBG called hybrid system and TLS used as a light source. Based on the experimental results PTFE sensor showed more higher magnitude of detection signal rather than carbon sensor and this result is agreement with the McMahon's theoretical results. Phase variation is inversely proportional to the elastic modulus of the mandrel material. In PTFE fiber sensor, tunable laser source showed more higher performance rather than CW case. Therefore, TLS fiber optic sensor can be applied to the hybrid system which is combined with Sagnac and FBG.