• Title/Summary/Keyword: Tumor microenvironment

Search Result 190, Processing Time 0.022 seconds

Laminin-1 Expression in Bone Marrow Stromal Cells of Cyclophosphamide-treated Rat (Cyclophosphamide가 흰쥐 골수의 기질세포에서 Laminin-1의 발현에 미치는 영향)

  • Lee, Chang-Hun;Chung, Ho-Sam;Paik, Doo-Jin;Hwang, Se-Jin;Kim, Won-Kyu;Youn, Jee-Hee;Kim, Chong-Kwan
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.385-398
    • /
    • 2002
  • The purpose of the present study is to investigate whether stromal cells supporting specific microenvironment for hematopoiesis of bone marrow are affected by toxicants and therapeutic drugs such as antibiotics and anticancer drugs and whether laminin-1 is associated with such effects. SD rats were intraperitoneally injected with 75 mg/kg of cyclophosphamide which is widely used to treat infant's solid tumor, leukemia and myeloma and sacrificed after 3 days, 1 week, 3 weeks or 5 weeks of injection. The bone marrow extracted and paraffin-sectioned was analyzed using immunohistochemical staining. A part of tissues was subjected to electron microscopy following reaction with rabbit anti-laminin antibody, biotinylated goat anti-rabbit IgG conjugated with 12 nm gold particles, and staining with uranyl acetate. 1. The bone marrow tissue at day 3 post injection with cyclophosphamide displayed dilated venous sinus, partial necrotic death, and decreased number of hematopoietic cells. Laminin-1 was intensively stained in the reticular and adipose tissues. 2. Up to 5 weeks post injection, laminin-1 was stained at a low level in the stromal tissue of bone marrow and the number of hematopoietic cell was increased. 3. Deposition of the gold particle which represents laminin-1 expression was observed at the highest level in the stromal cells of bone marrow obtained 3 days after injection, and decreased after 1 to 5 weeks. These results suggest that stromal cells which play a role in supporting microenvironment for bone marrow hematopoiesis augment induction of laminin-1 expression and activation upon administration of cyclophosphamide.

Comparative Evaluation of Colon Cancer Stemness and Chemoresistance in Optimally Constituted HCT-8 cell-based Spheroids (적정 구성 배양 HCT-8 기반 대장암 스페로이드의 암 줄기세포능 및 항암제 내성 평가의 비교 평가 연구)

  • Lee, Seung Joon;Kim, Hyoung-Kab;Lee, Hyang Burm;Moon, Yuseok
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1313-1319
    • /
    • 2016
  • Cancer is a complex disease heterogeneously composed of various types of cells including cancer stem-like cells responsible for relapse and chemoresistance in the tumor microenvironment. The conventional two-dimensional cell culture-based platform has critical limitations for representing the heterogeneity of cancer cells in the three-dimensional tumor niche in vivo. To overcome this insufficiency, three-dimensional cell culture methods in a scaffold-dependent or -free physical environment have been developed. In this study, we improved and simplified the HCT-8 colon cancer cell-based spheroid culture protocol and evaluated the relationship between cancer stemness and responses of chemosensitivity to 5- Fluorouracil (5-FU), a representative anticancer agent against colon cancer. Supplementation with defined growth factors in the medium and the culture dish of the regular surface with low attachment were required for the formation of constant-sized spheroids containing $CD44^+$ and $CD133^+$ colon cancer stem cells. The chemo-sensitivities of $CD44^+$ cancer stem cells in the spheroids were much lower than those of $CD44^-$ non-stem-like cancer cells, indicating that the chemoresistance to 5-FU is due to the stemness of colon cancer cells. Taken together, the inflammation and oncogenic gut environment-sensitive HCT-8 cell-based colon cancer spheroid culture and comparative evaluation using the simplified model would be an efficient and applicable way to estimate colon cancer stemness and pharmaceutical response to anticancer drugs in the realistic tumor niche.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

Association of Estrogen Receptor Alpha and Interleukin 6 Polymorphisms with Lymphovascular Invasion, Extranodal Extension, and Lower Disease-Free Survival in Thai Breast Cancer Patients

  • Sa-Nguanraksa, Doonyapat;Suntiparpluacha, Monthira;Kulprom, Anchalee;Kummalue, Tanawan;Chuangsuwanich, Tuenjai;Avirutnan, Panissadee;O-Charoenrat, Pornchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2935-2940
    • /
    • 2016
  • Breast cancer is the most frequent type of cancer diagnosed among women worldwide and also in Thailand. Estrogen and estrogen receptors exert important roles in its genesis and progression. Several cytokines have been reported to be involved in the microenvironment that promotes distant metastasis via modulation of immune and inflammatory responses to tumor cells. Estrogen receptor genetic polymorphisms and several cytokines have been reported to be associated with breast cancer susceptibility and aggressiveness. To investigate roles of genetic polymorphisms in estrogen receptor alpha (ESR1) and interleukin 6 (IL6), breast cancer patients and control subjects were recruited from the Division of Head, Neck and Breast Surgery (Siriraj Hospital, Bangkok, Thailand). Polymorphisms in ESR1 (rs3798577) and IL6 (rs1800795 and rs1800797) were evaluated by real-time PCR in 391 breast cancer patients and 79 healthy controls. Associations between genetic polymorphisms and clinicopathological data were determined. There was no association between genetic polymorphisms and breast cancer susceptibility. However the ESR1 rs3798577 CT genotype was associated with presence of lymphovascular invasion (OR=2.07, 95%CI 1.20-3.56, p=0.009) when compared to the TT genotype. IL6 rs1800795 CC genotype was associated with presence of extranodal extension (OR= 2.30, 95%CI 1.23-4.31, p=0.009) when compared to the GG genotype. Survival analysis showed that IL6 rs1800797 AG or AA genotypes were associated with lower disease-free survival. These findings indicate that polymorphisms in ESR1 and IL6 contribute to aggressiveness of breast cancer and may be used to identify high risk patients.

Effects of 17β-Estradiol on Colonic Permeability and Inflammation in an Azoxymethane/Dextran Sulfate Sodium-Induced Colitis Mouse Model

  • Song, Chin-Hee;Kim, Nayoung;Sohn, Sung Hwa;Lee, Sun Min;Nam, Ryoung Hee;Na, Hee Young;Lee, Dong Ho;Surh, Young-Joon
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.682-693
    • /
    • 2018
  • Background/Aims: Intestinal barrier dysfunction is a hallmark of inflammatory bowel diseases (IBDs) such as ulcerative colitis. This dysfunction is caused by increased permeability and the loss of tight junctions in intestinal epithelial cells. The aim of this study was to investigate whether estradiol treatment reduces colonic permeability, tight junction disruption, and inflammation in an azoxymethane (AOM)/dextran sodium sulfate (DSS) colon cancer mouse model. Methods: The effects of $17{\beta}$-estradiol (E2) were evaluated in ICR male mice 4 weeks after AOM/DSS treatment. Histological damage was scored by hematoxylin and eosin staining and the levels of the colonic mucosal cytokine myeloperoxidase (MPO) were assessed by enzyme-linked immunosorbent assay (ELISA). To evaluate the effects of E2 on intestinal permeability, tight junctions, and inflammation, we performed quantitative real-time polymerase chain reaction and Western blot analysis. Furthermore, the expression levels of mucin 2 (MUC2) and mucin 4 (MUC4) were measured as target genes for intestinal permeability, whereas zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 4 (CLDN4) served as target genes for the tight junctions. Results: The colitis-mediated induced damage score and MPO activity were reduced by E2 treatment (p<0.05). In addition, the mRNA expression levels of intestinal barrier-related molecules (i.e., MUC2, ZO-1, OCLN, and CLDN4) were decreased by AOM/DSS-treatment; furthermore, this inhibition was rescued by E2 supplementation. The mRNA and protein expression of inflammation-related genes (i.e., KLF4, NF-${\kappa}B$, iNOS, and COX-2) was increased by AOM/DSS-treatment and ameliorated by E2. Conclusions: E2 acts through the estrogen receptor ${\beta}$ signaling pathway to elicit anti-inflammatory effects on intestinal barrier by inducing the expression of MUC2 and tight junction molecules and inhibiting pro-inflammatory cytokines.

Mesenchymal Stem Cell-derived Exosomes: Applications in Cell-free Therapy (중간엽줄기세포유래 엑소좀: 비세포치료제로서의 활용)

  • Heo, June Seok;Kim, Jinkwan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.391-398
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are an attractive resource for refractory patients because of their anti-inflammatory/immunomodulatory capability and multi-lineage differentiation potential. The transplantation of MSCs has led to positive results in preclinical and clinical application to various diseases, including autoimmune disease, cardiovascular disease, cancer, liver cirrhosis, and ischemic stroke. On the other hand, studies have shown that paracrine factors, not direct cell replacement for damaged cells or tissue, are the main contributors in MSC-based therapy. More recently, evidence has indicated that MSC-derived exosomes play crucial roles in regulating the paracrine factors that can mediate tissue regeneration via transferring nucleic acids, proteins, and lipids to the local microenvironment and cell-to-cell communication. The use of these exosomes is likely to be beneficial for the therapeutic application of MSCs because their use can avoid harmful effects, such as tumor formation involved in cell transplantation. Therefore, therapeutic applications using MSC-derived exosomes might be safe and efficient strategies for regenerative medicine and tissue engineering. This review summarizes the recent advances and provides a comprehensive understanding of the role of MSC-derived exosomes as a therapeutic agent.

Microenvironments and Cellular Proliferation Affected by Oxygen Concentration in Non-Small Cell Lung Cancer Cell Line (비소세포폐암주에서 산소 농도에 따른 미세 배양 환경과 세포 증식능)

  • Shin, Jong Wook;Jeon, Eun Ju;Kwak, Hee Won;Song, Ju Han;Lee, Young Woo;Jeong, Jae Woo;Choi, Jae Cheol;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.3
    • /
    • pp.242-250
    • /
    • 2007
  • Background: Abnormal angiogenesis can induce hypoxia within a highly proliferating tumor mass, and these hypoxic conditions can in turn create clinical problems, such as resistance to chemotherapy. However, the mechanism by which hypoxia induces these changes has not yet been determined. Therefore, this study was conducted to determine how hypoxia induces changes in cell viability and extracellular microenvironments in an in vitro culture system using non-small cell lung cancer cells. Methods: The non-small cell lung cancer cell line, A549 was cultured in DMEM or RPMI-1640 media that contained fetal bovine serum. A decrease in the oxygen tension of the media that contained the culture was then induced in a hypoxia microchamber using a $CO_2-N_2$ gas mixture. A gas analysis and an MTT assay were then conducted. Results: (1) The decrease in oxygen tension was checked the anaerobic gas mixture for 30 min and then reoxygenation was induced by adding a 5% $CO_2-room$ air gas mixture to the chamber. (2) Purging with the anaerobic gas mixture was found to decrease the further oxygen tension of cell culture media. (3) The low oxygen tension resulted in a low pH, lactic acidosis and a decreased glucose concentration in the media. (4) The decrease in glucose concentration that was observed as a result of hypoxia was markedly different when different types of media were evaluated. (5) The decrease in oxygen tension inhibited proliferation of A549 cells. Conclusion: These data suggests that tumor hypoxia is associated with acidosis and hypoglycemia, which have been implicated in the development of resistance to chemotherapy and radiotherapy.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

Expression of Peroxiredoxin and Thioredoxin in Human Lung Cancer and Paired Normal Lung (인체의 폐암과 정상 폐조직에서 Peroxiredoxin 및 Thioredoxin의 발현 양상)

  • Kim, Young Sun;Park, Joo Hun;Lee, Hye Lim;Shim, Jin Young;Choi, Young In;Oh, Yoon Jung;Shin, Seung Soo;Choi, Young Hwa;Park, Kwang Joo;Park, Rae Woong;Hwang, Sung Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.59 no.2
    • /
    • pp.142-150
    • /
    • 2005
  • Background : Continuous growth stimulation by various factors, as well as chronic oxidative stress, may co-exist in many solid tumors, such as lung cancer. A new family of antioxidant proteins, the peroxiredoxins (Prxs), have been implicated in the regulation of many cellular processes, including cell proliferation, differentiation and apoptosis. However, a real pathophysiological significance of Prx proteins, especially in lung disease, has not been sufficiently defined. Therefore, this study was conducted to investigate the distribution and expression of various Prx isoforms in lung cancer and other pulmonary conditions. Method : Patients diagnosed with lung cancer, and who underwent surgery at the Ajou Medical Center, were enrolled. The expressions of Prxs, Thioredoxin (Trx) and Thioredoxin reductase (TR) were analyzed using proteomic techniques and the subcellular localization of Prx proteins was studied using immunohistochemistry on normal mouse lung tissue. Result : Immunohistochemical staining has shown the isoforms of Prx I, II, III and V are predominantly expressed in bronchial and alveolar lining epithelia, as well as in the alveolar macrophages of the normal mouse lung. The isoforms of Prx I and III, and thioredoxin were also found to be over-expressed in the lung cancer tissues compared to their paired normal lung controls. There was also an increased amount of the oxidized form of Prx I, as well as a putative truncated form of Prx III, in the lung cancer samples when analyzed using 2-dimensional electrophoresis. In addition, a 43 kDa intermediate molecular weight protein band, and other high molecular weight bands of over 20 kDa, recognized by the anti-Prx I antibody, were present in the tissue extracts of lung cancer patients on 1-Dimensional electrophoresis, which require further investigation. Conclusion : The over-expressions of Prx I and III, and Trx in human lung cancer tissue, as well as their possible chaperoning function, may represent an attempt by tumor cells to adjust to their microenvironment in a manner advantageous to their survival and proliferation, while maintaining their malignant potential.