• Title/Summary/Keyword: Tumor metabolism

Search Result 234, Processing Time 0.027 seconds

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Inho Choi
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.12-19
    • /
    • 2024
  • Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.

Decreased Expression of FADS1 Predicts a Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma

  • Du, Yong;Yan, Shu-Mei;Gu, Wan-Yi;He, Fan;Huang, Li-Yun;Li, Mei;Yuan, Yan;Chen, Ren-Hui;Zhong, Qian;Li, Man-Zhi;Li, Yong;Zeng, Mu-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5089-5094
    • /
    • 2015
  • FADS1 (fatty acid desaturase 1) plays a crucial role in fatty acid metabolism, and it was recently reported to be involved in tumorigenesis. However, the role of FADS1 expression in esophageal squamous cell carcinoma (ESCC) remains unknown. In the current study, we investigated the expression and clinical pathologic and prognostic significance of FADS1 in ESCC. Immunohistochemical analyses revealed that 58.2% (146/251) of the ESCC tissues had low levels of FADS1 expression, whereas 41.8% (105/251) exhibited high levels of FADS1 expression. In positive cases, FADS1 expression was detected in the cytoplasm of cells. Correlation analyses demonstrated that FADS1 expression was significantly correlated with tumor location (p=0.025) but not with age, gender, histological grade, tumor status, nodal status or TNM staging. Furthermore, patients with tumors expressing high levels of FADS1had a longer disease-free survival time (p<0.001) and overall survival time (p <0.001). Univariate and multivariate analyses revealed that, along with nodal status, FADS1 expression was an independent and significant predictive factor (p<0.001). In conclusion, our study suggested that FADS1 might be a valuable biomarker and potential therapeutic target for ESCC.

The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition (Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1245-1255
    • /
    • 2017
  • Most cancer cells produce ATP predominantly through glycolysis instead of through mitochondrial oxidative phosphorylation, even in the presence of oxygen. The phenomenon is termed the Warburg effect, or the glycolytic switch, and it is thought to increase the availability of biosynthetic precursors for cell proliferation. EMTs have critical roles in the initiation of the invasion and metastasis of cancer cells. The glycolytic switch and EMT are important for tumor development and progression; however, their correlation with tumor progression is largely unknown. The Snail transcription factor is a major factor involved in EMT. The Snail expression is regulated by distal-less homeobox 2 (Dlx-2), a homeodomain transcription factor that is involved in embryonic and tumor development. The Dlx-2/Snail cascade is involved in Wnt-induced EMTs and the glycolytic switch. This study showed that in response to Wnt signaling, the Dlx-2/Snail cascade induces the expression of PFKFB2, which is a glycolytic enzyme that synthesizes and degrades fructose 2, 6-bisphosphate (F2,6BP). It also showed that PFKFB2 shRNA prevents Wnt-induced EMTs in the breast-tumor cell line MCF-7. The prevention indicated that glycolysis is linked to Wnt-induced EMT. Additionally, this study showed PFKFB2 shRNA suppresses in vivo tumor metastasis and growth. Finally, it showed the PFKFB2 expression is higher in breast, colon and ovarian cancer tissues than in matched normal tissues regardless of the cancers' stages. The results demonstrated that PFKFB2 is an important regulator of EMTs and metastases induced by the Wnt, Dlx-2 and Snail factors.

Studies on Selective Modulators and Anti-anorexigenic Agents in Korean Red Ginseng (한, 일 고려인삼 심포지움)

  • Hiromichi Okuda;Keizo Sekiya;Hiroshi Masuno;Takeshi Takaku;Kenji Kameda
    • Journal of Ginseng Research
    • /
    • v.11 no.2
    • /
    • pp.145-252
    • /
    • 1987
  • Isolated rat adipocytes are well known to possess opposite pathways of lipid metabolism: lipolysis and ipogenesis. Both of the metabolism respond to various biologically active substances such as epinephrine, ACTH and insulin. Epinephrine and ACTH stimulate lipolysis and insulin accelerates lipogenesis. Recently, Korean red ginseng powder was found to contain adenosine and an acidic poptide which inhibited epinephrine-induced lipolysis and sl imulated insulin-mediated lipogenesis from added glucose. The acidic peptide is consisted mainly of glutamic acid and glucose. Ginsenosides Rb1 and Re inhibited ACTH-induced lipolysis in isolated rat adipocytes, while they did not affect insulinstimulated lipogenesis, Thus, all these substances extracted from Korean red ginseng exhibited selective modulations toward the opposite metabolic pathways in rat adipocyte; They inhibited the lipolysis but not the lipogenesis. We call these substances"selective modulators". Recently, we isolated a toxic substance named "toxohormone-L " from ascites fluid of patients with various malignant tumors. The toxohormone-L stimulated lipolysis in rat adipocytes and induced anorexia in rats. Both the lipolytic and the anorexigenic actions of toxohormone-L were found to be inhibited by ginsenoside Rb2 in Korean red ginseng. Based on these results, physiological signifi¬cances of these substances in Korean red ginseng were discussed. Pan ax ginseng is a medicinal plant long used in treatment of various pathological states including general complaints such as head ache, shoulder ache, chilly constitution and anorexia in cancer patients, There have been many pharmacological studies on Panax ginseng roots. Petkovllreported that oral administration of an aqueous alcoholic extract of ginseng roots decreased the blood sugar levtl of rabbits. Saito2lreported that Panax ginseng suppressed hyperglycemia induced by epinephrine and high carbohydrate diets. These findings suggest that Panax ginseng roots contain insulin-like substances. Previously, we demonstrated that gin¬seng roots contain an insulin-like peptide which inhibits epinephrine-induced lipolysis and stimulated insulin-mediated lipogenesis. In 1984, we suggested that such an insulin-like substance should be called a selective modulator4). Present investigation describes the details of the selective modulators in ginseng roots. During progressive weight loss in patients with various neoplastic disease, depletion of fat stores have been observed. The depletion of body fat during growth of neoplasms is associated with increase in plasma free fatty acids. Recently, we found that the ascites fluid from patients with hepatoma or ovarian tumor and the pleural fluid from patients with malignant lymphoma elicited fatty acid release in slices of rat adipose tissue in vitro. The lipolytic factor, named"toxohormone-L". was purifed from the ascites fluid of patients with hepatoma. The isolated preparation gave a single band on both disc gel electrophoresis and sodium dodecyl sulfate(SDS)-acrylamide gel electrophoresis in the presence of ${\beta}$-mercaptoethanol. Its molecular weight was determined to be 70,000-75,000 and 65,000 by SDS-acrylamide gel electrophoresis and analytical ultracentrifugation, respectively. Injection of toxohormone-L into the lateral ventricle of rats significantly suppressed food and water intakes. There was at least 5 hr delay between its injection and appearance of its suppressive effect. In the present study, we also tried to find a inhibitory substance toward toxohormone-L from root powder of ginseng.

  • PDF

The Mitochondrial Warburg Effect: A Cancer Enigma

  • Kim, Hans H.;Joo, Hyun;Kim, Tae-Ho;Kim, Eui-Yong;Park, Seok-Ju;Park, Ji-Kyoung;Kim, Han-Jip
    • Interdisciplinary Bio Central
    • /
    • v.1 no.2
    • /
    • pp.7.1-7.7
    • /
    • 2009
  • "To be, or not to be?" This question is not only Hamlet's agony but also the dilemma of mitochondria in a cancer cell. Cancer cells have a high glycolysis rate even in the presence of oxygen. This feature of cancer cells is known as the Warburg effect, named for the first scientist to observe it, Otto Warburg, who assumed that because of mitochondrial malfunction, cancer cells had to depend on anaerobic glycolysis to generate ATP. It was demonstrated, however, that cancer cells with intact mitochondria also showed evidence of the Warburg effect. Thus, an alternative explanation was proposed: the Warburg effect helps cancer cells harness additional ATP to meet the high energy demand required for their extraordinary growth while providing a basic building block of metabolites for their proliferation. A third view suggests that the Warburg effect is a defense mechanism, protecting cancer cells from the higher than usual oxidative environment in which they survive. Interestingly, the latter view does not conflict with the high-energy production view, as increased glucose metabolism enables cancer cells to produce larger amounts of both antioxidants to fight oxidative stress and ATP and metabolites for growth. The combination of these two different hypotheses may explain the Warburg effect, but critical questions at the mechanistic level remain to be explored. Cancer shows complex and multi-faceted behaviors. Previously, there has been no overall plan or systematic approach to integrate and interpret the complex signaling in cancer cells. A new paradigm of collaboration and a well-designed systemic approach will supply answers to fill the gaps in current cancer knowledge and will accelerate the discovery of the connections behind the Warburg mystery. An integrated understanding of cancer complexity and tumorigenesis is necessary to expand the frontiers of cancer cell biology.

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang;Jin-Ho Lim;Hee-Yun Kim;Hyunyong Kim;Hyung-Min Kim;Hyun-Ja Jeong
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.670-681
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

Effects of stocking density on the homeostasis of uric acid and related liver and kidney functions in ducks

  • Peiyi Lin;Sui Liufu;Jinhui Wang;Zhanpeng Hou;Yu Liang;Haiyue Wang;Bingxin Li;Nan Cao;Wenjun Liu;Yunmao Huang;Yunbo Tian;Danning Xu;Xiujin Li;Xinliang Fu
    • Animal Bioscience
    • /
    • v.37 no.5
    • /
    • pp.952-961
    • /
    • 2024
  • Objective: Stocking density (SD) is an important issue in the poultry industry, which is related to the production performance, intestinal health and immune status. In the present study, the effects of SD on the metabolism and homeostasis of uric acid as well as the related functions of the liver and kidney in ducks were examined. Methods: A total of 360 healthy 56-day-old Shan-ma ducks were randomly divided into the low stocking density (n = 60, density = 5 birds/m2), medium stocking density (n = 120, density = 10 birds/m2) and high stocking density groups (HSD; n = 180, density = 15 birds/m2). Samples were collected in the 3rd, 6th, and 9th weeks of the experiment for analysis. Results: The serum levels of uric acid, lipopolysaccharide and inflammatory cytokines (interleukin-1β [IL-1β], IL-8, and tumor necrosis factor-α [TNF-α]) were increased significantly in the HSD group. Serious histopathological lesions could be seen in both the livers and kidneys in the HSD group in the 9th week. The mRNA expression levels of inflammatory cytokines (IL-8 and TNF-α) and related pathway components (toll-like receptor 4, myeloid differentiation primary response gene 88, and nuclear factor-κB) were increased significantly in both the livers and kidneys in the HSD group. The mRNA expression levels of enzymes (adenosine deaminase, xanthine oxidase, phosphoribosyl pyrophosphate amidotransferase, and phosphoribosyl pyrophosphate synthetase 1) related to the synthesis of uric acid increased significantly in the livers in the HSD group. However, the mRNA expression level of solute carrier family 2 member 9, which plays an important role in the excretion of uric acid by the kidney, was decreased significantly in the kidneys in the HSD group. Conclusion: These results indicated that a higher SD could cause tissue inflammatory lesions in the liver and kidney and subsequently affect the metabolism and homeostasis of uric acid, and is helpful for guiding decisions related to the breeding and production of ducks.

Recurrent Tumoral Calcinosis - A Case Report - (재발성 종양성 석회증 - 증례 보고 -)

  • Chang, Jun-Dong;Lee, Weon-Ik;Choi, Soo-Joong;Kim, Seok-Woo;Kang, Shin-Taeg
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.6 no.2
    • /
    • pp.82-87
    • /
    • 2000
  • Tumoral calcinosis is a disease of unclear etiology which presents with periarticular and intramuscular calcification without the disorder of calcium and phosphorus metabolism. The incidence is very rare but the rate is higher among the blacks than whites. There has been no report on the recurrent occurrence on the asian race. We report a case that recurred several times with tumoral calcinosis of both knee and thigh. A 21-year-old woman visited to our department with masses in both right thigh and knee. She had a history of local excisions and biopsies(4 times at other hospital) and showed prompt recurrences. The complete marginal excision was performed for the treatment. The histological examination showed the findings that are compatible with tumoral calcinosis. There has been a free of recurrence over the past two years.

  • PDF

Multiple Xanthomatosis in Familiar Hypercholesterolemia Patient - A case report - (가족성 고콜레스테롤혈증 환자에서의 다발성 황색종 - 1례 보고 -)

  • Rhee, Seung-Koo;Lee, Hwa-Sung;Moon, Chan-Woong
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2000
  • We experienced the case of familiar hypercholesterolemia with multiple xanthomas which was treated by combined surgical and medical therapy. He was 26-year-old male patient of familiar hypercholesterolemia with multiple xanthomas in 22 sites on whole body, and was treated by 17 surgical excisions of the xanthomas and by medical therapy of the hypercholesterolemia. There was a normal healing process of the surgical wounds. Continual postoperative medical therapy of the hypercholesterolemia was done. There was no recurrence of the symptoms during more than 13 months of follow-up. But the serum level of the cholesterol was not lowered significantly, so we are treating him with drug therapy. Familial hypercholesterolemia is caused by a specific disorder of lipid metabolism, and is characterized by increased LDL cholesterol, tendon xanthomas, coronary disease associated with autosomal dominant transmission. Xanthomas usually appear in the second decade of life with familiar hypercholesterolemia which may have high risk for premature coronary atherosclerosis, which might be prevented with early diagnosis and medical treatment. So, orthopedic surgeons do not only excise the xanthomatosis surgically but also can diagnose the underlying hypercholesterolemia.

  • PDF