• Title/Summary/Keyword: Tumor Proliferation

Search Result 1,238, Processing Time 0.026 seconds

Alleviation of Ultraviolet-B Radiation-Induced Photoaging by a TNFR Antagonistic Peptide, TNFR2-SKE

  • Lee, Kyoung-Jin;Park, Kyeong Han;Hahn, Jang-Hee
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.151-160
    • /
    • 2019
  • Ultraviolet (UV) radiation of the sunlight, especially UVA and UVB, is the primary environmental cause of skin damage, including topical inflammation, premature skin aging, and skin cancer. Previous reports show that activation of nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) in human skin fibroblasts and keratinocytes after UV exposure induces the expression and release of proinflammatory cytokines, such as interleukin-1 (IL-1) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), and subsequently leads to the production of matrix metalloproteases (MMPs) and growth factor basic fibroblast growth factor (bFGF). Here, we demonstrated that TNFR2-SKEE and TNFR2-SKE, oligopeptides from TNF receptor-associated factor 2 (TRAF2)-binding site of TNF receptor 2 (TNFR2), strongly inhibited the interaction of TNFR1 as well as TNFR2 with TRAF2. In particular, TNFR2-SKE suppressed UVB- or $TNF-{\alpha}$-induced nuclear translocalization of activated $NF-{\kappa}B$ in mouse fibroblasts. It decreased the expression of bFGF, MMPs, and COX2, which were upregulated by $TNF-{\alpha}$, and increased procollagen production, which was reduced by $TNF-{\alpha}$. Furthermore, TNFR2-SKE inhibited the UVB-induced proliferation of keratinocytes and melanocytes in the mouse skin and the infiltration of immune cells into inflamed tissues. These results suggest that TNFR2-SKE may possess the clinical potency to alleviate UV-induced photoaging in human skin.

Anti-osteoarthritic effects of a combination of pomegranate concentrate powder, Eucommiae cortex and Achyranthis radix in rats

  • Choi, Beom-Rak;Ku, Sae-Kwang;Kang, Su-Jin;Park, Hye-Rim;Sung, Mi-Sun;Lee, Young-Joon;Park, Ki-Moon
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.86-113
    • /
    • 2018
  • Objectives: We examined the effects of a mixed formula consisting of dried pomegranate concentrate powder (PCP) and the aqueous extracts of Eucommiae cortex (EC) and Achyranthis radix (AR) in rats with surgically induced osteoarthritis (OA). Methods: Two weeks after OA-inducing surgery, a PCP:EC:AR 5:4:1 (g/g) combination or single formula was orally administered. Changes in body weight, knee thickness, maximum knee extension angle, bone mineral density of the knee joints, femoral and tibial articular surfaces, and compressive strength of the femoral and tibial articular cartilage (AC) were assessed, along with the prostaglandin E2 level, 5-lipoxygenase, matrix metalloproteinase (MMP)-2 and MMP-9 activity, and chondrogenic gene mRNA expression in the femoral and tibial AC with the synovial membrane (SM). In addition, the number of cleaved poly(ADP-ribose) polymerase, cyclooxygenase and tumor necrosis factor-${\alpha}$-immunoreactive cells in the femoral and tibial AC with SM were monitored, and the rate of cell proliferation was determined with a 5-bromo-2'-deoxyuridine uptake assay. Results : The signs of surgically induced OA in rats were significantly inhibited by both PCP, EC and AR combined and single formulas. In particular, the combination formula-treated OA model rats showed dose-dependent, significantly increased inhibitory activity against all tested criteria compared with single formula-treated rats. Conclusions: Taken together, our results suggest that the combination formula synergistically increased the anti-OA effects of its components through anti-inflammatory and chondrogenic activity in rats with surgically induced OA. In addition, 200, 100 and 50 mg/kg combination formula treatments showed dose-dependent inhibitory activity against all of the tested criteria.

Relationship between ganglioside expression and anti-cancer effects of a plant-derived antibody in breast cancer cells

  • Ju, Won Seok;Song, Ilchan;Park, Se-Ra;Seo, Sang Young;Cho, Jin Hyoung;Min, Sung-Hun;Kim, Dae-Heon;Kim, Ji-Su;Kim, Sun-Uk;Park, Soon Ju;Ko, Kisung;Choo, Young-Kug
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • Production of therapeutic monoclonal antibodies (mAbs) using a plant platform has been considered an alternative to the mammalian cell-based production system. A plant-derived mAb CO17-1AK ($mAb^P$ COK) can specifically bind to various types of cancer cell lines. The target protein of $mAb^P$ COK is the epithelial cell adhesion molecule (EpCAM) highly expressed in human epithelial cancer cells, including breast and colorectal cancer cells. It has been hypothesized that its overexpression supports tumor growth and metastasis. A ganglioside is extended well beyond the surfaces of the various cell membranes and has roles in cell growth, inflammation, differentiation, and carcinogenesis. However, the regulation of EpCAM gene expression in breast cancers and the role of gangliosides in oncogenesis are unclear. Here, the purpose of this study was to determine the effects of $mAb^P$ COK on human breast cancer cell proliferation, apoptosis, and ganglioside expression patterns. Our results show that treatment with $mAb^P$ COK suppressed the growth of breast cancer cells and induced apoptotic cell death. It also upregulated the expression of metastasis-related gangliosides in breast cancer cells. Thus, treatment with $mAb^P$ COK may have chemo-preventive therapeutic effects against human breast cancer.

Effects of Rutin on Anti-inflammatory in Adipocyte 3T3-L1 and Colon Cancer Cell SW-480 (지방세포 3T3-L1과 대장암세포 SW-480에서 메밀 성분인 rutin의 항염증 효과)

  • Lee, Suenglim;Seo, Eunyoung
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.1
    • /
    • pp.84-92
    • /
    • 2019
  • Purpose: The objective of this study was conducted to investigate the effects of rutin, buckwheat components on cell growth and anti-inflammation in adipocyte 3T3-L1 and human colon cancer cell SW-480. Methods: We cultured 3T3-L1 adipocyte and SW-480 colon cancer cell to confluence, at which time starvation was induced with SFM for 1 day. Cells were then cultured in medium containing 0, 25, 50, or $100{\mu}mol/mL$ of rutin 3T3-L1 or 0, 10, 20, or $40{\mu}mol/mL$ SW-480. Cell viability was measured using a cell viability kit. In addition, we examined the expression of mRNA related to inflammation. RT-PCR was used to quantity tumor necrosis factor ($TNF-{\alpha}$), interleukin-$1{\beta}$ ($IL-1{\beta}$), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) mRNA levels. Results: Rutin significantly inhibited 3T3-L1 and SW-480 cell proliferation in a dose and time dependent manner. Rutin also significantly reduced the mRNA expression of $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ at the highest dose. In addition, rutin treatment caused a significant reduction in COX-2 and iNOS mRNA levels compared to the control group. Conclusion: Overall, our results suggest that rutin has the potential to reduce inflammation, and that these effects are greater during tissue-damaging inflammatory conditions.

Discovery of an Indirubin Derivative as a Novel c-Met Kinase Inhibitor with In Vitro Anti-Tumor Effects

  • Ndolo, Karyn Muzinga;An, Su Jin;Park, Kyeong Ryang;Lee, Hyo Jeong;Yoon, Kyoung Bin;Kim, Yong-Chul;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.216-221
    • /
    • 2019
  • The c-Met protein is a receptor tyrosine kinase involved in cell growth, proliferation, survival, and angiogenesis of several human tumors. Overexpression of c-Met has been found in gastric cancers and correlated with a poor prognosis. Indirubin is the active component of Danggui Longhui Wan, which is a traditional Chinese antileukemic recipe. In the present study, we tested the anti-cancer effects of an indirubin derivative, LDD-1937, on human gastric cancer cells SNU-638. When we performed the in vitro kinase assay against the c-Met activity, LDD-1937 inhibited the activity of c-Met. This result was confirmed by immunoblot and immunofluorescence of phosphorylated c-Met. Immunoblot analysis showed that LDD-1937 decreased the expression of the Erk1/2, STAT3, STAT5, and Akt, downstream proteins of c-Met. In addition, LDD-1937 reduced the cell viability and suppressed colony formation and migration of SNU-638 cells. Furthermore, LDD-1937 induced $G_2/M$ phase arrest in the SNU-638 cells by decreasing the expression levels of cyclin B1 and CDC2. Cleaved-PARP, an apoptosis-related protein, was up-regulated in cells treated with LDD-1937. Overall, this study suggests that LDD-1937 may be a novel small-molecule with therapeutic potential for selectively inhibiting c-Met and c-Met downstream pathways in human gastric cancers overexpressing c-Met.

Cytotoxic Effect of Bee (A. mellifera) Venom on Cancer Cell Lines

  • Borojeni, Sima Khalilifard;Zolfagharian, Hossein;Babaie, Mahdi;Javadi, Iraj
    • Journal of Pharmacopuncture
    • /
    • v.23 no.4
    • /
    • pp.212-219
    • /
    • 2020
  • Objectives: Nowadays cancer treatment is an important challenge in the medical world that needs better therapies. Many active secretions produced by insects such as honey bees used to discover new anticancer drugs. Bee venom (BV) has a potent anti inflammatory, anti cancer and tumor effects. The aim of present study is evaluation of anticancer effects induced by Apis mellifera venom (AmV) on cell Lines. Methods: AmV was selected for study on cancer cell lines. Total protein, molecular weight and LD50 of crude venom were determined. Then, cells were grown in Dulbecco's Modified Eagle medium supplemented with 10% fetal bovine serum and 1% antibiotics. The A549, HeLa and MDA-MB-231 cell Lines were exposed by different concentration of AmV. The morphology of cells was determined and cell viability was studed by MTT assay. Evaluation of cell death was determined by and DNA fragmentation. Results: The results from MTT assay showed that 3.125 ㎍/mL of A549, 12.5 for HeLa and 6.25 ㎍/mL of MDA-MB-231 killed 50% of cells (p < 0.05). Morphological analysis and the results from hoescht staining and DNA fragmentation indicated that cell death induced by AmV was significantly apoptosis. Conclusion: The data showed that using lower dosage of AmV during treatment period cause inhibition of proliferation in time and dose dependant manner. Findings indicated that some ingredients of AmV have anticancer effects and with further investigation it can be used in production of anticancer drugs.

Effects of Particulate Matter 10 Inhalation on Lung Tissue RNA expression in a Murine Model

  • Han, Heejae;Oh, Eun-Yi;Lee, Jae-Hyun;Park, Jung-Won;Park, Hye Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.84 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Background: Particulate matter 10 (PM10; airborne particles <10 ㎛) inhalation has been demonstrated to induce airway and lung diseases. In this study, we investigate the effects of PM10 inhalation on RNA expression in lung tissues using a murine model. Methods: Female BALB/c mice were affected with PM10, ovalbumin (OVA), or both OVA and PM10. PM10 was administered intranasally while OVA was both intraperitoneally injected and intranasally administered. Treatments occurred 4 times over a 2-week period. Two days after the final challenges, mice were sacrificed. Full RNA sequencing using lung homogenates was conducted. Results: While PM10 did not induce cell proliferation in bronchoalveolar fluid or lead to airway hyper-responsiveness, it did cause airway inflammation and lung fibrosis. Levels of interleukin 1β, tumor necrosis factor-α, and transforming growth factor-β in lung homogenates were significantly elevated in the PM10-treated group, compared to the control group. The PM10 group also showed increased RNA expression of Rn45a, Snord22, Atp6v0c-ps2, Snora28, Snord15b, Snora70, and Mmp12. Generally, genes associated with RNA splicing, DNA repair, the inflammatory response, the immune response, cell death, and apoptotic processes were highly expressed in the PM10-treated group. The OVA/PM10 treatment did not produce greater effects than OVA alone. However, the OVA/PM10-treated group did show increased RNA expression of Clca1, Snord22, Retnla, Prg2, Tff2, Atp6v0c-ps2, and Fcgbp when compared to the control groups. These genes are associated with RNA splicing, DNA repair, the inflammatory response, and the immune response. Conclusion: Inhalation of PM10 extensively altered RNA expression while also inducing cellular inflammation, fibrosis, and increased inflammatory cytokines in this murine mouse model.

Anti-tumorigenic Effects of Angelica gigase Nakai Extract on MBA-MB-231 through Regulating Lats1/2 Activation (유방암세포에서 LATS1/2 활성에 의한 당귀 추출물의 항암효과)

  • Kim, Cho-Long;Kim, Nambin;Jeong, Han-Sol;Shin, Yu-Su;Mo, Jung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2020
  • The Hippo-YAP signaling pathway is critical for cell proliferation, survival, and self-renewal in both Drosophila and mammals. Disorder of Hippo-YAP pathway leads to tumor development, progression and poor prognosis in various cancers. YAP/TAZ are the key downstream effectors of the Hippo pathway and they can be inhibited through LATS1/2, core kinases in the Hippo pathway, mediated phosphorylation. In this study, we investigated the effect of Angelica gigas Nakai extract (AGNE) on Hippo-YAP/TAZ pathway. First, ANGE induced YAP/TAZ phosphorylation and dissociation of the YAP/TAZ-TEAD transcription complex. By qRT-PCR, we found that ANGE inhibits the expression of YAP/TAZ-TEAD target gene, CTGF and CYR61. In addition, the transcriptional activity of YAP/TAZ was not suppressed significantly in LATS1/2 double-knockout (DKO) cells by ANGE compared to LATS1/2 wild-type (WT) cells, which means AGNE inhibits YAP/TAZ signaling through direct action on LATS1/2. Further, it was confirmed that AGNE-induced activation of LATS1/2 inhibited the migration potential of the vector-expressing cells by suppressing YAP/TAZ activity. The reduced migration potential was restored in active YAP-TEAD expressing cells. Taken together, the results of this study indicate that ANGE downregulates YAP/TAZ signaling in cells through the activation of LATS1/2.

Immune-Enhancing Effects of Crude Polysaccharides from Korean Ginseng Berries on Spleens of Mice with Cyclophosphamide-Induced Immunosuppression

  • Nam, Ju Hyun;Choi, JeongUn;Monmai, Chaiwat;Rod-in, Weerawan;Jang, A-yeong;You, SangGuan;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.256-262
    • /
    • 2022
  • Panax ginseng C. A. Meyer is well known as traditional herbal medicine, and ginseng berries are known to exhibit potential immune-enhancing functions. However, little is known about the in vivo immunomodulatory activity of Korean ginseng berries. In this study, crude Korean ginseng berries polysaccharides (GBP) were isolated and their immunomodulatory activities were investigated using cyclophosphamide (CY)-induced immunosuppressive BALB/c mice. In CY-treated mice, oral administration of GBP (50-500 mg/kg BW) remarkably increased their spleen sizes and spleen indices and activated NK cell activities. GBP also resulted in the proliferation of splenic lymphocytes (coordinating with ConA: plant mitogen which is known to stimulate T-cell or LPS: endotoxin which binds receptor complex in B cells to promote the secretion of pro-inflammatory cytokines) in a dose-dependent manner. In addition, GBP significantly stimulated mRNA expression levels of immune-associated genes including interleukin-1β (IL-1β), IL-2, IL-4, IL-6, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4), and cyclooxygenase-2 (COX-2) in CY-treated mice. These results indicate that GBP is involved in immune effects against CY-induced immunosuppression. Thus, GBP could be developed as an immunomodulation agent for medicinal or functional food application.

Evaluation of 20(S)-ginsenoside Rg3 loaded hydrogel for the treatment of perianal ulcer in a rat model

  • Jin, Longhai;Liu, Jinping;Wang, Shu;Zhao, Linxian;Li, Jiannan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.771-779
    • /
    • 2022
  • Background: As a kind of common complication of the surgery of perianal diseases, perianal ulcer is known as a nuisance. This study aims to develop a kind of 20(S)-ginsenoside Rg3 (Rg3)-loaded hydrogel to treat perianal ulcers in a rat model. Methods: The copolymers PLGA1600-PEG1000-PLGA1600 were synthesized by ring-opening polymerization process and Rg3-loaded hydrogel was then developed. The perianal ulcer rat model was established to analyze the treatment efficacy of Rg3-loaded hydrogel for ulceration healing for 15 days. The animals were divided into control group, hydrogel group, free Rg3 group, Rg3-loaded hydrogel group, and Lidocaine Gel® group. The residual wound area rate was calculated and the blood concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), and vascular endothelial growth factor (VEGF) were recorded. Hematoxylin and eosin (H&E) staining, Masson's Trichrome (MT) staining, and tumor necrosis factor α (TNF-α), Ki-67, CD31, ERK1/2, and NF-κB immunohistochemical staining were performed. Results: The biodegradable and biocompatible hydrogel carries a homogenous interactive porous structure with 10 ㎛ pore size and five weeks in vivo degradation time. The loaded Rg3 can be released sustainably. The in vitro cytotoxicity study showed that the hydrogel had no effect on survival rate of murine skin fibroblasts L929. The Rg3-loaded hydrogel can facilitate perianal ulcer healing by inhibiting local and systematic inflammatory responses, swelling the proliferation of nuclear cells, collagen deposition, and vascularization, and activating ERK signal pathway. Conclusion: The Rg3-loaded hydrogel shows the best treatment efficacy of perianal ulcer and may be a candidate for perianal ulcer treatment.