• Title/Summary/Keyword: Tumble control valve

Search Result 19, Processing Time 0.023 seconds

A Study on the Steady Flow Characteristics by PDA and Tumble Control Valve in Combustion Chamber (스월 및 연소실 형상에 의한 정상유동특성에 관한 연구)

  • Kim Dae-Yeol;Han Young-Chool;Park Bong-Kyu
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.74-82
    • /
    • 2006
  • This paper describes the steady flow characteristics due to PDA and tumble control valve in combustion chamber. We also investigated the flow inclination angle defined as the inverse tangent of non-dimensional rig tumble(NRT) devided by non-dimensional rig swirl(NRS) to find dominant flow direction. So we adapted two different types of PDA valve(port deactivation valve) to strengthen a swirl flow. The in-cylinder swirl flow different tendency between with/without PDA valve. It might be thought to be affected by swirl flow. We could find that tumble ratio and swirl ratio is different by PDA valve. The comparison are taked account of the swirl, the tumble ratio comparison in same mass flow rate. As a result, PDA valve is better than tumble control valve both in steady flow condition and swirl, tumble ratio. The data from present study are available for design of engine as the basic data.

Investigation on the In-Cylinder Flow of 5-Valve Gasoline Engine by Using Two Color PIV Method (이색 PIV 기술을 이용한 5밸브 가솔린엔진 연소실 내의 유동특성 분석)

  • Lee, Gi-Hyeong;U, Yeong-Wan;Park, Sang-Chan;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.238-244
    • /
    • 2002
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These engines have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, in-cylinder flow patterns were visualized with laser sheet method and velocity profiles at near intake valves were inspected by using a two-color PIV. In addition, steady flow tests were performed to quantify tumble ratio of flow-fields generated by a tumble control valve(TCV). Experimental results of steady flow test show that the cure of tumble ratio in intake 3-valve engine farmed as a S shape with valve lift changes. This tendency is different from the one in intake 2-valve engine. Using laser sheet method and two color PIV method, we can find that the intake flow through upper valve increases and the velocity gradient also slightly increases as valve lift increases. From this study, the in-cylinder flow characteristics around intake valves were made clearly.

A Study on Analysis of Intake Flow in a 5-valves Gasoline Engine by using a Two Color PIV System (이색 PIV를 이용한 5밸브 가솔린 엔진의 흡입 유동 해석)

  • Woo, Young-Wan;Park, Sang-Chan;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.933-938
    • /
    • 2001
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These vehicles have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, velocity profiles at near intake valves were inspected by using a two-color PIV and laser sheet method with tumble control valve(TCV). In addition, steady flow tests were performed to quantify tumble ratio on flow-fields generated with a TCV. These experimental results show that the tendency of the tunble ratio in intake 3-valve engine is different from the one in intake 2-valve engine. From this results, the intake flow characteristics around intake valves were made clear.

  • PDF

Analysis of in-cylinder steady flow for dual-intake-valve gasoline engine using single-frame particle tracking velocimetry (단일 프레임 입자 추적법을 이용한 흡입 2밸브 가솔린 기관의 실린더 내 정상 유동 해석)

  • Lee, Chang-Sik;Lee, Gi-Hyeong;Im, Gyeong-Su;Jeon, Mun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.650-658
    • /
    • 1997
  • Analysis and control of intake charge motion such as swirl and tumble are very important factors in improving the gasoline engine performance. In this paper, single-frame PTV (particle tracking velocimetry) is used to investigate intake tumble patterns in a steady flow test rig of gasoline engine with dual-intake-valve and pent-roof combustion chamber. Intake tumble pattern is quantified in accordance with blockage ratio of TIV (tumble intensifying valve) with single- frame PTv.The view of the instantaneous 2-D velocity field gives a realistic understanding of in-cylinder flow field. Thus it is confirmed that PTV is a effective tool in engine design. In conventional port, two tumble structures appear clearly, and the larger one is observed under the exhaust valve side and the smaller is right below the intake valve side. The larger vorticity is observed in TIV port, thus it is concluded that TIV have an effect on intensified tumble motion in cylinder flow.

The Effects of Tumble and Swirl Flows on the Flame Propagation in a 4-Valve Gasoline Engine (4-벨브 가솔린 엔진에서 텀블, 스월 유동이 화염전파에 미치는 영향)

  • Bae, Choong-Sik;Kang, Kern-Yong
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.153-162
    • /
    • 1997
  • The effects of tumble and swirl flows on the flame propagation were investigated experimentally in a 4-valve optical gasoline engine. The tumble flow patterns, generated by various intake ports of different entry angle; $25^{\circ}$ , $20^{\circ}$ and $15^{\circ}$ , were characterized under motored conditions with laser Doppler velocirnetry. Inclined tumble(swirl) flows were induced by three different swirl control valves. The initial flame propagation was visualized by an ICCD camera and its image were analyzed to compare the enflamed area and displacement of initial flames. It was found that there is a correlation between the stronger tumble during induction and turbulence levels at the time of ignition resulting in faster flame development. Inclined tumble was proved to be more beneficial than the pure tumble for faster and stable combustion under lean mixture conditions, which was confirmed by faster propagating flame images.

  • PDF

Turbulence Enhancement Characteristics Analysis of Inclined-Tumbles for Various SCV Configurations (SCV형상별 경사텀블유동의 난류증가 특성 해석)

  • Lee, J.W.;Kang, K.Y.;Choi, S.H.;Park, S.C
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.234-242
    • /
    • 1998
  • It has been demonstrated that the in-cylinder turbulence is enhanced by inclined swirl with a SCV(swirl control valve). The inclined-tumble flow measurement and analysis were performed for various types of intake systems that generated several different combinations of swirl ratio and tumble ratio in the cylinder. Experiments were conducted in a 4-valve optically accessed transparent research engine using a backward-scatter LDV mode under motoring condition at 1,000rpm. The influence of swirl/tumble levels on the characteristics of turbulence was analysed. This study presents experimental results of the inclined-tumble flow structure, including the flow motion phenomena, angular momentum and turbulence intensity.

  • PDF

Analysis of In-Cylinder Steady Flow for Gasoline Engine Using Particle Tracking Velocimetry (입자추적법을 이용한 가솔린 기관의 실린더 내 정상유동 해석)

  • 정구섭;전충환;장영준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.34-43
    • /
    • 2001
  • Analysis and control of intake charge motion such as swirl and tumble are very important to improve the performance of gasoline engines. In this paper, single frame double exposure PTV(particle tracking velocimetry) is used to investigate intake flow characteristic in a steady flow test rig of gasoline engine with 2-valve and pent-roof combustion chamber. To validate this PTV method, we confirmed reliability of this PTV method using chopper, and coaxial burner experiments. The velocity Held of intake flow is measured with the intake valve lift variation. It is shown that maximum flow velocity is increased and tumble flow become stronger than inverse tumble flow as valve lift increase.

  • PDF

An Experimental Study for the Effect of Intake Port Flows on the Tumble Generation and Breakdown in a Motored Engine (모터링엔진의 흡기포트 유동변화에 따른 텀블생성 및 소멸에 관한 실험적 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.912-919
    • /
    • 1994
  • The engine combustion is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake stroke breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of this relationship is not well known. This paper describes the tumble flow measurements inside the cylinder of a 4-valve S.I. engine using laser Doppler velocimetry(LDV) under motoring(non-firing) conditions. This is conducted on an optically assesed single cylinder research engine under motored conditions at an engine speed of 1000rpm. Three different cylinder head intake port configurations are studied to develop a better understanding the tumble flow generation, development, and breakdown mechanisms.

Optimal Gas-Flow Conditions for Stabilization of Lean-Burn Combustion (희박연소 안정화를 위한 가스유동장 조건에 관한 연구)

  • 이기형;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.763-770
    • /
    • 1995
  • Gas flow characteristics within the cylinder is important factors in impoving lean combustion stability. This paper shows the effects of various flow fields generated by a swirl control valve(SCV) on combustion process in a 4-valve spark ignition engine. An impulse swirl/tumble meter was used to elucidation the steady-state flow characteristics, and a rotating grating type LDV was developed to measure the mean velocity and tunbulence intensity in relation to the crank angle. These methodologies were applied to clarify the correlation between gas flow characteristics and combustion stability at a lean air fuel ratio. An analysis of the correlation revealed the gas flow conditions required to optimize a lean-burn system.

Lean burn Combustion Characteristics of Direct Injection Gasoline Engine with Swirl Control Valve (스월 제어 밸브를 적용한 직접분사식 가솔린 엔진의 희박연소 특성)

  • Lee, Min-Ho;Moon, Hak-Hoon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The performance characteristics of lean burn system in gasoline engine are mainly affected by the air-fuel mixture in cylinder, gas exchange process of manifold system, exhaust emission of engine, and the electronic engine control system. In order to obtain the effect of performance factors on the optimum conditions of lean burn engine, this study deal with the behavior of mixture formation, gas flow characteristics of air, flow and evaporation analysis of spray droplet in cylinder, vaporization and burning characteristics of lean mixture in the engine, and the control performance of electronic engine control system. The optimum flow conditions were investigated with the swirl and tumble flows in the combustion chamber with swirl control valve. The performance characteristics and optimum condition of flow field in intake system were analyzed by the investigation of inlet flow of air and combustion stabilization on cylinder.

  • PDF