• 제목/요약/키워드: Tumble Flow

검색결과 88건 처리시간 0.022초

Stroke변화가 Four-Valve SI 엔진 실린더내 유동장에 미치는 영향 (Effect of Stroke Changes on the In-Cylinder Flow Field in a Four-Valve SI Engines)

  • 유성출
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.1-8
    • /
    • 2001
  • The flow field inside a cylinder of four-valve Sl engine was investigated quantitatively using a three-dimensional Laser Doppler Velocimetry system, to determine how stroke changes affect the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, the sane intake manifold, engine head, cylinder, and the piston were used to examine the flow characteristics in different strokes. Quantification of the flow field was done by calculating three major parameters which are believed to adequately characterize in cylinder motion. These quantities were TKE, tumble and swirl ratios. The LDV results reveal that flow patterns are similar, the flow velocities scale with piston speed but another parameters such as TKE, and tumble and swirl numbers are not the same for different stroke systems.

  • PDF

Quantification of Volumetric In-Cylinder Flow of SI Engine Using 3-D Laser Doppler Velocimetry ( II )

  • Yoo, Seoung-Chool
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.47-54
    • /
    • 2007
  • Simultaneous 3-D LDV measurements of the in-cylinder flows of three different engine setups were summarized for the quantification of the flow characteristics in each vertical or horizontal plane, and in entire cylinder volume. The ensemble averaged-velocity, tumble and swirl motions, and turbulent kinetic energy during the intake and compression strokes were examined from the measured velocity data (approximately 2,000 points for each engine setup). The better spatial resolution of the 3-D LDV allows measurements of the instantaneous flow structures, yielding more valuable information about the smaller flow structures and the cycle-to-cycle variation of these flow patterns. Tumble and swirl ratios, and turbulent kinetic energy were quantified as planar and volumetric quantities. The measurements and calculation results were animated for the visualization of the flow, and hence ease to analysis.

흡입 밸브 각도에 따른 실린더 내 흡입 유동 특성 비교 (In-Cylinder Intake Flow Characteristics according to Inlet Valve Angle)

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.142-149
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real intake flow. The results show that the intake flow pattern of conventional engine is more complicated than that of narrow angle one in horizontal plane and the vertical component of in-cylinder flow is rapidly decayed at the end stage of intake. On the other hand, the flow pattern of narrow angle one is relatively well arranged in horizontal plane and the vertical velocity component remains so strongly that forms large-scale strong tumble. Two engines also form commonly three tumble; two are small and bellow the intake valve and one is large-scale. The center of large scale tumble moves to bottom of cylinder as the vertical velocity increases.

4-벨브 가솔린 엔진에서 텀블, 스월 유동이 화염전파에 미치는 영향 (The Effects of Tumble and Swirl Flows on the Flame Propagation in a 4-Valve Gasoline Engine)

  • 배충식;강건용
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1997년도 제15회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.153-162
    • /
    • 1997
  • The effects of tumble and swirl flows on the flame propagation were investigated experimentally in a 4-valve optical gasoline engine. The tumble flow patterns, generated by various intake ports of different entry angle; $25^{\circ}$ , $20^{\circ}$ and $15^{\circ}$ , were characterized under motored conditions with laser Doppler velocirnetry. Inclined tumble(swirl) flows were induced by three different swirl control valves. The initial flame propagation was visualized by an ICCD camera and its image were analyzed to compare the enflamed area and displacement of initial flames. It was found that there is a correlation between the stronger tumble during induction and turbulence levels at the time of ignition resulting in faster flame development. Inclined tumble was proved to be more beneficial than the pure tumble for faster and stable combustion under lean mixture conditions, which was confirmed by faster propagating flame images.

  • PDF

3차원 LDV를 이용한 실린더내 공기 유동특성에 관한 연구 (A Study on the Characteristics of In-Cylinder Air Flow with 3-D LDV Measurement)

  • 유성출
    • 한국분무공학회지
    • /
    • 제11권1호
    • /
    • pp.39-47
    • /
    • 2006
  • In-cylinder flows in a motored 3.5L four-valve SI engine were investigated quantitatively using three-component LDV system, to determine how engine configuration affects the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, two distinct intake/piston arrangements were used to examine the flow characteristics. Quantification of the flow field was done by calculating two major parameters which are believed to characterize adequately in-cylinder motion. These quantities were turbulent kinetic energy(TKE) and tumble ratio in each plane at each crank angle. The results showed that in-cylinder flow pattern is dominated by the intake effects and two counter rotating vortices, developed during the intake stroke, produced relatively low tumble ratio. Therefore, the applicability of these quantities should be carefully considered when evaluating characteristics resulting from the complex in-cylinder flow motions.

  • PDF

엔진 흡입포트 시스템 유동특성 규명을 위한 스월-텀블 합성효과에 관한 연구 (A Study on Combined Effects between Swirl and Tumble Flow of Intake Port System in Cylinder Head)

  • 윤정의
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.76-82
    • /
    • 1999
  • The object of this study is to find new evalution index for in-cylinder flow characteristics insteady of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angular flow characteristics.

  • PDF

2밸브 가솔린엔진의 실린더내 스월 및 텀블유동연구 (A Study on In-Cylinder Flow Motion of Swirl and Tumble in a 2- Valve Type Gasoline Engine)

  • 엄종호;정동수;이진욱
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.63-71
    • /
    • 1993
  • To improve flow in-cylinder flow in a 2-valve gasoline engine, various geometries of combustion chambers are modified. Air flow rate, swirl and tumble flow are measured and analyzed by swirl impulse meter and LDV in a steady state flow measuring rig. The results of LDV experiment are compared with the data of swirl impulse meter.

  • PDF

소형 가솔린 가시화엔진의 내부유동 특성연구 (Characterization of In-Cylinder Flow of a Small Gasoline Optical Engine)

  • 김종선;정경석;정인석;조경국
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.87-95
    • /
    • 1995
  • A commercial DOHC four valve engine was modified to make a single-cylinder optical model engine with replaceable head. Three kinds of head were used to generate swirl, tumble, and combined swirl/tumble motion. Schlieren visualization technique was applied to characterize the in-cylinder flow qualitatively. Particle Image velocimetry has been developed and applied for the quantitative flow measurements. Axial and tangential flow motion inside the cylinder has been characterized. The swirl/tumble port shows beneficial results in terms of turbulence generation for the initial flame propagation and mean swirl motion for the overall flame propagation.

  • PDF

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

흡입 밸브 각도에 따른 압축 행정 중 실린더 내 유동 특성 (In-Cylinder Compression Flow Characteristics According to Inlet Valve Angle)

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.77-83
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during compression stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real compression flow. The results show that the flow patterns are well arranged compared with intake flow and the basic tumble flow structures are maintained until end compression stage regardless of valve angle. Also the results show that the tumble motion is intensified by momentum conservation during compression in normal engine. In the normal engine, the bulk shape of flow pattern is "Y" type at the top of cylinder and reverse "Y" type at the bottom of cylinder and weak reverse flow exists at the top of cylinder along cylinder center line. Otherwise, the other engine's flow pattern changes from "Y" type to "T" type at the top of cylinder during compression.