• Title/Summary/Keyword: Tubular shaft yoke

Search Result 2, Processing Time 0.018 seconds

The Effect of Torque Variation on the Stress Distribution Characteristics in A-IMS Module with both Side Tubular Shaft Yoke (양형 튜블러 샤프트 요크 적용 가변 슬라이딩 중간축 모듈의 토크 변경에 따른 응력 분포 특성)

  • Yeom, Jin Seop;Suh, Hyun Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.901-905
    • /
    • 2018
  • The objective of this study is to investigate the effect of torque variation on stress distributions in A-IMS module with both side tubular shaft yoke by numerically. In order to achieve this, the torque value was increased from 10Nm to 40Nm, and the results of this work were confirmed in terms of Von-mises Stress and the displacement characteristics. As the torque in module assembly was increased, the stress in tubular shaft york and splined shaft york was increased linearly. The indentation due to the steel ball was occurred in over $40N{\cdot}m$ torque which is over the yield strength condition. The largest displacement occurred in the tubular shaft yoke 1, however, it does not exceed the yield strength and is supposed to be restored due to the elasticity. Therefore, it was concluded that there is no problem for the manufacturing of A-IMS with both side tubular shaft yoke.

Improvement of Tubular Shaft Yoke Spline Machining in Both Side IMS Module (양형 IMS 모듈 튜블러 샤프트의 스플라인 가공 개선)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.924-928
    • /
    • 2018
  • The objective of this study is to solve a problem that is occurred during the spline machining of tubular shaft yoke in both side IMS module. In order to simulate the problem, the movement direction of upper die was set as standard case and error case. The material of tubular shaft yoke was set to S20C as refer to the analysis library. The movement directions of upper die were separated with standard case and error case. The error case was set to simulate the problem in the spline machining of tubular shaft yoke. In order to solve the problem, the outer radius of upper die were modelled from 9.40mm to 9.44mm. The simulation results were analyzed and compared in terms of effective stress, metal flow line and folding phenomena characteristics. In case of the outer radius of upper die was 9.42mm, it was observed a relatively uniform effective stress distribution and had a straight metal flow line.