• Title/Summary/Keyword: Tubular Tower

Search Result 34, Processing Time 0.021 seconds

Wind tunnel tests on wind loads acting on steel tubular transmission towers under skewed wind

  • YANG, Fengli;NIU, Huawei
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.93-108
    • /
    • 2022
  • Steel tubular towers are commonly used in UHV and long crossing transmission lines. By considering effects of the model scale, the solidity ratio and the ratio of the mean width to the mean height, wind tunnel tests under different wind speeds on twenty tubular steel tower body models and twenty-six tubular steel cross-arm models were completed. Drag coefficients and shielding factors of the experimental tower body models and cross-arm models in wind directional axis for typical skewed angles were obtained. The influence of the lift forces on the skewed wind load factors of tubular steel tower bodies was evaluated. The skewed wind load factors, the wind load distribution factors in transversal and longitudinal direction were calculated for the tubular tower body models and cross-arm models, respectively. Fitting expressions for the skewed wind load factors of tubular steel bodies and cross-arms were determined through nonlinear fitting analysis. Parameters for skewed wind loads determined by wind tunnel tests were compared with the regulations in applicable standards. Suggestions on the drag coefficients, the skewed wind load factors and the wind load distribution factors were proposed for tubular steel transmission towers.

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.

A Study on the Frequency Characteristics of Tubular and Jacket Type Tower for Offshore Wind Turbine Tower (해상 풍력 발전용 Tubular와 Jacket Type Tower의 진동 특성에 관한 연구)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul;Kim, Keon-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.615-621
    • /
    • 2007
  • Wind power generation is one of the promising gateways that will solve the energy crisis in the future. The wind power generator studied so far is limited to static interpretation in the areas related to tower. This study broadly sets the form of tower as tubular and jacket, identifies the characteristics of each and aims to find and apply their trend to in actual design and manufacturing process. This paper identified the resonance frequency of tower at each mode and studied their features. Furthermore, this study identified the characteristics of the load that occurs in operation and the effect of additional mass incurring when installed in sea, and it compared the two types of tower and was able to predict their trend.

Development of Eco-friendly Electric Transmission Towers in KEPCO (환경조화형 철탑 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.135-140
    • /
    • 2019
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed eco-friendly towers that are more attractive, well blending into the surrounding environment, and much more economical than underground transmissions. There are four categories of the eco-friendly electric transmission towers about design aspects. Firstly, there is decoration type such as tree tower and ensemble tower. Tree tower looks like actual trees with leaves and branches so it blends into surroundings. Ensemble towers were designed after pair of crane birds. Those towers have decoration features and art works. Structural examination and manufacturing this type would be very similar to the conventional transmission towers. Secondly, there is arm design type such as traditional tower. Design features are added to the existing towers. As partial design can be adoptable on these types, it can easily meet height regulations and attach to conventional lattice towers and tubular steel poles. Also, these towers are more economical than others. Third category is multipurpose type such as Sail Tower. These towers have simple pole or tubular structure with features which can be used as information message board, public relations and much more. This type will face greater wind pressure because of the area of the board, also visibility must take into consideration. Lastly, there is moulding type such as arc pylon. It is different shape to the conventional towers - lattice towers and tubular steel poles. Dramatic design changes have been adapted - from a hard and static tower to a soft and curved tower. These towers will well stand out in the field. However, structural examination and manufacturing this type would be difficult and costly. Also certain towers of this type would require scaffolding or false work to construct, which will result in limitations of the construction area. This paper shows KEPCO 154 kV Sail tower in detail. KEPCO 154 kV Sail tower that is included in fabrication of sample tower and tower testing has developed and the results are presented in this paper. We hope that sail tower is also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people in coastal area.

Development of Compact Towers with Insulation Arm in Korea (절연암 적용 컴팩트 철탑 개발)

  • Lee, Won-kyo;Yun, Cheol-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.2
    • /
    • pp.63-66
    • /
    • 2018
  • Lattice towers and tubular steel poles have been commonly used for electrical power transmission in Korea as well as the other countries. They are durable, structurally stable, simple and can easily be constructed in limited spaces. However, residents are opposed to construct transmission lattice towers in their areas because they are not visually attractive, and electrical field occur at the transmission lines. Underground transmissions have been used instead of the traditional towers to resolve these problems, however they are not cost effective to construct and run. Therefore, we have developed compact towers that are more attractive, well blend into the surrounding environment and much more economical than underground transmissions. This paper shows the design of a compact towers with insulation arm, in order to reduce the height of tower and the separation between phases. The compact tower can be installed in a narrow right-of-way. Insulation arms are easily applied to lattice and steel tubular towers instead of steel arms. Compact towers with insulation arm are also considered as a solution to have public acceptance or to create a familiar atmosphere among towers and people. Compact tower compared with a conventional tower, insulation arms reduces the width and height of the tower by 20% and 15% respectively.

A Numerical Analysis for Stress Concentration of Openings in Offshore Tubular Steel Tower under Design Loading Condition (설계하중조건에 따른 해상풍력 강재타워 출입구에 발생되는 응력집중에 대한 해석적 연구)

  • Reyno, Hannah;Park, Jong-Sup;Kang, Sung-Yong;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1516-1523
    • /
    • 2015
  • This study investigates the stress concentration factor of a door opening of an offshore tubular steel tower. The tubular steel tower is subjected to eight (8) different load combinations which are deemed to be normal and abnormal operating cases for the ultimate limit state and serviceability limit state. Analytical method using parametric equations and numerical method of finite element are used to analyze the stress components as well as any translations or rotations where the flow of stress is interfered with. A finite element program, ABAQUS, is used for the numerical method analysis. Trends of the stress concentration in the localized area near the opening are studied, and points of interest are defined for comparison among three different cases of tubular steel tower: without door and without reinforcement; without door opening and with reinforcement; and with door opening and with reinforcement. Findings are tabulated and shown in illustrative charts, and conclusions are made.

Design Optimization of Complex Loaded Tower Using Composite Materials in Off and On Shore (복합재료를 이용한 Off/On Shore에서의 복합하중을 받는 Tower에 대한 최적설계)

  • Son, Choong-Yul;Byun, Hyo-In;Kim, Sung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.289-294
    • /
    • 2002
  • Unlike Tubular Steel Tower, This Composite Material Tower is a low-technology Component, whose design is easy to optimize, and which therefore during the design process-lends itself easily as an object for possible cost reduction at very little effort. This may come in useful as the cost of a tower usually significant part of the total cost of a structure. This paper is written by the Composite Materials Tower which loaded Complex loading in Off and On shore. This Composite Material Tower is made by the Method of Filament Winding, and the Component of Composite Material is used by the Roving RS220PE-535. When it loaded Complex trading, there is a results which is bigger than steel tower deflection. We controlled this 1a18e deflection by stiffeners which has thickness 20mm. At last, Off and On Shore Tower which used Composite Materials is compared with Off and On Shore Tower which used Steel.

  • PDF

765kV Steel Tubular Tower Design On Considering Stringing Load (가선작업 하중을 고려한 765kV 강관철탑 설계)

  • Jung, Tay-Ho;Kim, Shin-Chul;Yoon, Young-Soon;Shin, Tae-Woo;Lee, An-Keun;Kim, Kwang-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.935-937
    • /
    • 1998
  • The stringing load was added to tower design that consider the active load in 765kV transmission line construction. The nominal auxiliary members of steell tubular tower arm were altered into stress members by means of three dimensional design analysis method. 765kV transmission line construction also use self-standing tower that does not install temporary wire which support the section tower placed between drum field and engine field when stringing process.

  • PDF

Design feasibility of double-skinned composite tubular wind turbine tower

  • Han, Taek Hee;Park, Young Hyun;Won, Deokhee;Lee, Joo-Ha
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.727-753
    • /
    • 2015
  • A double-skinned composite tubular (DSCT) wind power tower was suggested and automatic section design software was developed. The developed software adopted the nonlinear material model and the nonlinear column model. If the outer diameter, material properties and design capacities of a DSCT wind power tower are given, the developed software performs axial force-bending moment interaction analyses for hundreds of sections of the tower and suggests ten optimized cross-sectional designs. In this study, 80 sections of DSCT wind power towers were designed for 3.6 MW and 5.0 MW turbines. Moreover, the performances of the 80 designed sections were analyzed with and without considerations of large displacement effect. In designing and analyzing them, the material nonlinearity and the confining effect of concrete were considered. The comparison of the analysis results showed the moment capacity loss of the wind power tower by the mass of the turbine is significant and the large displacement effect should be considered for the safe design of the wind power tower.

A Study on the Full Scale Structural Test of High Voltage Electric Transmission Tower (초고압 송전철탑 구조성능시험에 관한 연구)

  • 김우범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.171-180
    • /
    • 1994
  • Full scale structural test of 765kv electric transmission tower was performed to measure the stresses and displacement of towers under the design loadings, and the results were compared with analytical results based on three dimensional frame analysis. Also, the actual ultimate strength of the tower was measured through destructive test. Especially, to predict the behavior and failure of the connection of tubular member, finite element analysis was performed and compression test for the segments of tubular member were carried out. Valuable information for the overall and local behavior of the tower was obtained and reliability of current analytical method was confirmed.

  • PDF