• Title/Summary/Keyword: Tubes

Search Result 3,118, Processing Time 0.029 seconds

Development of Mobile Robot Systems for Automatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines (화력발전소 보일러 튜브 및 대형 유체수송관 자동 진단을 위한 이동로봇 시스템 개발)

  • Park, Sang-Deok;Jeong, Hee-Don;Lim, Zhong-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.254-260
    • /
    • 2002
  • In this study, two types of mobile robotic systems using NDT (Non-destructive testing) method are developed for automatic diagnosis of the boiler tubes and large size pipelines. The developed mobile robots crawl the outer surface of the tubes or pipelines and detect in-pipe defects such as pinholes, cracks and thickness reduction by corrosion and/or erosion using EMAT (Electro-magnetic Acoustic Transducer). Automation of fault detection by means of mobile robotic systems for these large-scale structures helps to prevent significant troubles without danger of human beings under harmful environment.

Experimental Investigation of Flow Boiling Heat Transfer of R-410A and R-134a in Horizontal Small Tubes

  • Pamitran, A.S.;Choi, Kwang-Il;Oh, Jong-Taek;Hrnjak, Pega
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1141-1146
    • /
    • 2009
  • Experimental investigation on two-phase flow boiling heat transfer of R-410A and R-134a in horizontal small tubes is reported. The pressure drop and local heat transfer coefficients were obtained over heat flux range of 5 to $40\;kW/m^2$, mass flux range of 70 to $600\;kg/m^2s$, saturation temperature range of 2 to $12^{\circ}C$, and quality up to 1.0 in test section with inner tube diameters of 3.0 and 0.5 mm, and lengths of 2000 and 330 mm, respectively. The section was heated uniformly by applying a direct electric current to the tubes. The effects of mass flux, heat flux, and inner tube diameter, on pressure drop and heat transfer coefficient are presented. The experimental results are compared against several existing correlations. A new boiling heat transfer coefficient correlation based on the superposition model for refrigerants in small tubes is developed.

  • PDF

A Study on the Bendability of Stainless Steel Tubes (스테인리스 강관의 굽힘 특성 연구)

  • Lee, G.Y.;Lee, H.J.;Yi, H.K.;Kim, Y.K.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.336-341
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important process for the successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, welding methods, mechanical properties and hardness. Through the stainless steel tubes bent by rotary draw bending machine, this study shows the following : (1) The influence on spring back ratio variation with stress level in the welded bent tube. (2) The Cross-section ovality variation with weld seam position and bending radius. (3) The relation between elongation and thickness reduction of tension zone with weld seam position and bending radius. (4) Workability evaluation of bent stainless steel tubes through the hardness of materials and hardness increment. The results of this study may help to understanding of characteristics on bendability of stainless steel tubes.

Partial Insulation and Heating Tubes Configuration of Shell and Tube Steam Reformer at Medium Temperature (중온형 원통다관형 수증기 개질기의 부분단열 및 반경방향 분배 구조의 영향)

  • PARK, DAIN;YU, SANGSEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.618-626
    • /
    • 2017
  • Conventional high temperature reformers are not suitable for hybrid fuel cell systems that use waste heat as a heat source. So, development of a low temperature type reformer is needed. However, the analysis was conducted in two ways to increase the thermal efficiency, because of low reforming rate due to the low heat source. First, it is a way to ger thermal gain from the outside through partial insulation. In the case of one heat source tube and several heat source tubes, we analyzed the effect of partial heat insulation in some cases. Second, we found the most efficient arrangement of the heat source tubes by changing the location of the heat source tubes. The interpretation was carred out using the COMSOL Mutiphysics program.

Monitoring degradation in concrete filled steel tubular sections using guided waves

  • Beena, Kumari;Shruti, Sharma;Sandeep, Sharma;Naveen, Kwatra
    • Smart Structures and Systems
    • /
    • v.19 no.4
    • /
    • pp.371-382
    • /
    • 2017
  • Concrete filled steel tubes are extensively applied in engineering structures due to their resistance to high tensile and compressive load and convenience in construction. But one major flaw, their vulnerability to environmental attack, can severely reduce the strength and life of these structures. Degradation due to corrosion of steel confining the concrete is one of the major durability problems faced by civil engineers to maintain these structures. The problem accelerates as inner surface of steel tube is in contact with concrete which serves as electrolyte. If it remains unnoticed, it further accelerates and can be catastrophic. This paper discusses a non-destructive degradation monitoring technique for early detection corrosion in steel tubes in CFST members. Due to corrosion, damage in the form of debonding and pitting occurs in steel sections. Guided ultrasonic waves have been used as a feasible and attractive solution for the detection and monitoring of corrosion damages in CFST sections. Guided waves have been utilized to monitor the effect of notch and debond defects in concrete filled steel tubes simulating pitting and delamination of steel tubes from surrounding concrete caused by corrosion. Pulse transmission has been used to monitor the healthy and simulated damaged specimens. A methodology is developed and successfully applied for the monitoring of concrete filled steel tubular sections undergoing accelerated chloride corrosion. The ultrasonic signals efficiently narrate the state of steel tube undergoing corrosion.

Evaluation of Plastic Collapse Pressure for Steam Generator Tube with Non-Aligned Two Axial Through-Wall Cracks (두 개의 비대칭 축방향 관통균열이 존재하는 증기발생기 세관의 소성붕괴압력 평가)

  • Moon Seong-In;Chang Yoon-Suk;Lee Jin-Ho;Song Myung-Ho;Choi Young-Hwan;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1070-1077
    • /
    • 2005
  • The $40\%$ of wall thickness criterion which has been used as a plugging rule is applicable only to a single cracked steam generator tubes. In the previous studies performed by authors, several failure prediction models were introduced to estimate the plastic collapse pressures of steam generator tubes containing collinear or parallel two adjacent axial through-wall cracks. The objective of this study is to examine the failure prediction models and propose optimum ones for non-aligned two axial through-wall cracks in steam generator tubes. In order to determine the optimum ones, a series of plastic collapse tests and finite element analyses were carried out for steam generator tubes with two machined non-aligned axial through-wall cracks. Thereby, either the plastic zone contact model or COD based model was selected as the optimum one according to axial distance between two clacks. Finally, the optimum failure prediction model was used to demonstrate the conservatism of flaw characterization rules for various multiple flaws according to ASME code.

Enhancement of Heat and Mass Transfer by Insert Spring in a Vertical Absorber with Surfactant

  • Yoon, Jung-In;Choi, Kwang-Hwan;Moon, Choon-Geun;Sarker M.M.A;Kwon, Oh-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1239-1250
    • /
    • 2004
  • This research was concerned with the enhancement of heat transfer by surfactant added to the aqueous solution of LiBr. Different vertical tubes were tested with and without an additive of normal octyl alcohol. The test tubes are a bare inner surface. a groove inner surface, a corrugated inner surface and a spring inserted inner surface tubes. The additive concentration was about 0.08 mass%. The heat transfer coefficient was measured as a function of the film Reynolds number in the range of 20~200. Experiments were carried out at higher cooling water temperature of $35^{\circ}C$ to simulate an air cooling condition for several kinds of absorber testing tubes. The experimental results were compared with and without surfactant. The enhancement of heat transfer by Marangoni convection effect which was generated by addition of the surfactant is observed in each test tube. Especially, it is clarified that the tube with an inserted spring has the highest enhancement effect.

A study on the pulsatile flow characteristics of Newtonian and non-Newtonian fluids in the bifurcated tubes (분기관내 뉴턴유체와 혈액의 맥동유동특성에 관한 연구)

  • Seo, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3607-3619
    • /
    • 1996
  • Experimental and numerical studies for three-dimensional pulsatile flows are conducted to investigate the flow characteristics in the bifurcated tubes. Velocity measurements in experimental study were made by both Pulsed Doppler Ultrasound(PDU) machine and Laser Doppler Anemometer(LDA) system. Glycerin is used for experimental study. Experimental results are used to verify the results of the numerical simulation. Flow characteristics of Newtonian fluid and blood in the bifurcated tubes under the steady and pulsatlie flows are numerically investigated. Finite volume method is employed for three-dimensional numerical simulations. Blood is considered as a non-Newtonian fluid and the constitutive equation of blood is used for the numerical analysis. Numerical analyses are focused on the flow patterns for various branch angles ranging from 30.deg. to 90.deg. and diameter ratios such as 1.0, 0.8, and 0.6. Pulsatile flow characteristics of blood are compared with those of Newtonian fluid. Parameter effects on axial velocity, pressure and wall shear stress distribution along the bifurcated tubes are discussed in terms of the branch angle, diameter ratio, and Reynolds number.

Experimental Studies on the Evaporative Heat Transfer Characteristics of CO2/Propane Refrigerant Mixtures in Horizontal Smooth and Micro-fin Tubes (이산화탄소/프로판 혼합냉매의 수평평활관 및 마이크로 핀관에서의 증발열전달에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Yong-Jin;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.290-299
    • /
    • 2008
  • Evaporation heat transfer characteristics of $CO_2$/propane mixtures in horizontal smooth and micro-fin tubes have been investigated by experiment. The experiments were carried out for several test conditions of mass fluxes, heat fluxes, compositions of $CO_2$/propane refrigerant mixtures and tube geometries. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Heat transfer coefficient data during evaporation process of $CO_2$/propane mixtures were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 mm, respectively. The tests were conducted at mass fluxes of 318 to 997 $kg/m^2s$, heat fluxes of 6 to 20 $kW/m^2$ and for several mixture compositions (100/0, 75/25, 50/50, 25/75, 100/0 by wt% of $CO_2$/propane). The differences of heat transfer characteristics between smooth and micro-fin tubes for various compositions of $CO_2$/propane refrigerant mixtures and the effect of mass flux, and heat flux on enhancement factor (EF) and penalty factor (PF) were presented.

Minimization of the Spring back in the Coiling Process of the Helical Steam Generator Tubes of Integral Reactor SMART (일체형원자로 SMART의 나선형 증기발생기 전열관 코일링 시 스프링백 최소화 방안)

  • Kim, Yong-Wan;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.837-842
    • /
    • 2000
  • In the coiling process of helical steam generator tubes of integral reactor SMART, a considerable amount of spring back, which induces dimensional inaccuracy and difficulty in fabrication, has been arised. In this research, an analytical model was derived to evaluate the amount of the spring back for steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.

  • PDF