• Title/Summary/Keyword: Tube conductivity

Search Result 161, Processing Time 0.028 seconds

Platinum and carbon nano tube addition in carbon black counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.229-230
    • /
    • 2012
  • Platinum (Pt) has been commonly used as a counter electrode material in dye-sensitized solar cells, because it has high catalytic activity and electric conductivity as well as chemical inertness with iodide electrolyte. However, Pt is too expensive to be commercialized. Therefore, in the present study, carbon black counter electrode with Pt and carbon nano tube (CNT) was investigated. The power conversion efficiency with Pt added carbon black electrode was lower than hat of pure Pt electrode which was 6.47 %. By adding 3 wt% Pt to the carbon black counter electrode, the power conversion efficiency was maximized at 5.88 %. On them, additional adding of 1 wt % CNT, the power conversion efficiency (${\eta}$)wasincreasedupto6.21%. The reason of power conversion efficiency improvement with a proper amount of Pt and CNT was examined by comparing the impedance properties measured using EIS.

  • PDF

Effect of Impressed Potential on the SCC of Al-Brass (Al-황동의 응력부식균열 특성에 미치는 인가전위의 영향)

  • 정해규;임우조
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2004
  • In general, the protection method of Shell and Tube Type heat exchanger for a vessel has been applied as a sacrificial anode, which is attached at the inner side of the shell. However, this is an insufficient protection method for tube. Therefore, a more suitable method, such as the impressed current cathodic protection for tube protection, is required. Al-brass is the raw material of tubes for heat exchanger of a vessel where seawater is used for cooling the water. It has a high level of heat conductivity, excellent mechanical properties, and a high level of corrosion resistance, due to a cuprous oxide (Cu$_2$O) layer against th seawater. However, in actuality, it has been reported that Al-brass tubes for heat exchanger of a vessel can produce local corrosion, such as stress corrosion cracking (SCC). This paper studied the effect of impressed potential on the stress corrosion cracking of Al-brass for impressed current cathodic protection in 3.5% NaCl +0.1% NH$_4$OH solution, under flow by a constant displacement tester. Based on the test results, the latent time of SCC, stress corrosion crack propagation, and the dezincification phase of Al-brass are investigated.

The theoretical analysis of characteristics for temperatures in cw $CO_{2}$ laser (CW $CO_{2}$ 레이저의 온도 특성에 관한 해석)

  • Kang, Dong-Heon;Park, Deug-Il;Lee, Choo-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.465-468
    • /
    • 1988
  • The output power is dependent of the vibrational level temperatures and wall temperature of the discharge tube in cw $CO_{2}$ lasers. The method postulates the introduction of a vibrational temperatures Ti for each vibrational mode. The vibrational and wall temperature are dertermined by the equations of the vibrational energy balance and thermal conductivity.

  • PDF

Growth of Rutile Single Crystal by Floating Zone Method (Floating Zone법에 의한 Rutile($TiO_2$)단결정 육성)

  • 신재혁;강승민;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.8
    • /
    • pp.1050-1054
    • /
    • 1990
  • Rutile(TiO2) single crystals were grown by FZ method. Feed rod was sintered in the longitudinal tube-shaped furnace at 135$0^{\circ}C$ and optimum growth condition was growth rate 5-8mm/hr, rotation rate 30-40rpm. When crystal was growing, atomosphere was oxidized condition, and grown single crystal was annealed at 110$0^{\circ}C$. The rutile single crystals were oriented to [001] direction and color change of single crystals were related to atmosphere, and difference of electric conductivity and resistance was due to the fact above.

  • PDF

A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment (고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구)

  • Lee, Min-Gyu;Chung, Geun-Sik;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.817-826
    • /
    • 2008
  • Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Study on Graphite/Polypropylene/Liquid Crystalline Polymer Composite for a Bipolar Plate of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 수소 연료 전지 분리판 용 흑연/폴리프로필렌/액정고분자 복합 재료의 특성에 관한 연구)

  • Dhungana, Biraj;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3627-3632
    • /
    • 2015
  • We investigated mechanical, rheological and electrical properties of graphite/PP/LCP composites for a bipolar plate of the polymer electrolyte membrane fuel cell. The composites containing very low molecular weighted PP showed much higher electrical conductivity compared with other thermoplastics. This was attributed to the enhanced dispersion of graphite particles due to the low viscosity of the PP. The conductivity of the composites was increased in a great extent by incorporation of small amount of carbon nano tube (CNT). However, the acid treated CNT which contains oxygen atoms did not increase the conductivity of the composite. From this result, it is concluded that the CNT has higher affinity with non polar polymer. The composite with low molecular weighted PP provided good processability so that the composites can be processed by an injection molding while the mechanical strength is deficient compared to other polymers. In order to reinforce the low mechanical property, LCP/PP was used as a binder and the graphite/PP/LCP composite showed the higher conductivity and moderate mechanical strength maintaining suitable processability.

Carbon Nano Tube Dispersion Evaluation in B-stage Resin Films (B-stage 레진 필름의 카본나노튜브 분산도 평가 및 제조공정 최적화)

  • Oh, Young-Seok;Park, Tea-Hoon;Byun, Joon-Hyung;Yi, Jin-Woo;Kim, Byung-Sun;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.353-357
    • /
    • 2016
  • An appropriate way to fabricate a hybrid composite containing evenly dispersed carbon nano tubes(CNTs) is to stacking B-stage resin films that contain evenly dispersed CNTs and various reinforcing fiber layers alternatively. In the present study, B-stage resin films are manufactured via shear mixing and three-roll milling. CNT dispersion in resin via these two processes are evaluated by SEM on their fracture surfaces. For more efficient process, the dispersivities are evaluated according to the number of calendering passes. Samples are made for different number of passes during calendering, and their dispersions are evaluated via SEM fractographs as well as by measuring their electrical conductivities. Additionally, the optimal process conditions are obtained by measuring the electrical conductivity and evaluating their dispersivity of the samples prepared by gap mode and force mode.

Nondestructive evaluation of wall thinning covered with insulation using pulsed eddy current (펄스와전류를 이용한 보온재 비해체식 배관감육 평가기술)

  • Park, Duck-Gun;Babu, M.K.;Lee, Duk-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Local wall thinning is a point of concern in almost all steel structures such as pipe lines covered with a thermal insulator made up of materials with low thermal conductivity(fiberglass or mineral wool); hence, Non Destructive Technique(NDT) methods that are capable of detecting the wall thinning and defects without removing the insulation are necessary. In this study we developed a Pulsed Eddy Current(PEC) system to detect the wall thinning of Ferro magnetic steel pipes covered with fiber glass thermal insulator and shielded with Aluminum plate. The developed system is capable of detecting the wall thickness change through an insulation of thickness 10cm and 0.4mm aluminum shielding. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and coil sensor were used as a detecting element. In both cases, the results show a very good change corresponding to the thickness change of the test specimen. During these experiments a carbon steel tube of diameter 210mm and a length of 620mm, which is covered with insulator of 95mm thickness was used. To simulate the wall thinning, the thickness of the tube is changed for a specified length such as 2.5mm, 5mm and 8 mm from the inner surface of the tube. A 0.4mm thick Aluminum plate was covered on the Test specimen to simulate the shielding of the insulated pipelines. For both hall sensor and coil detection methods Fast Fourier transform(FFT) was calculated using window approach and the results for the test specimen without Aluminum shielding were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra. The PEC system can detect the wall thinning under the 95 mm thickness insulation and 0.4 mm Al shielding, and the output signal showed linear relation with tube wall thickness.

Study on Effect of Increase in Inlet Temperature on Nafion Membrane Humidifier (입구온도 변화가 중공사형 나피온 막가습기의 성능에 미치는 영향에 대한 연구)

  • Hwang, Jun-Young;Chang, Hyo-Sun;Kang, Kyung-Tae;Kang, Heui-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.361-369
    • /
    • 2011
  • The effect of an increase in the temperature of inlet air on the performance of a membrane humidifier for a PEMFC (Polymer Electrolyte Membrane Fuel Cell) vehicle was investigated both experimentally and numerically. A shell-and-tube type gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling was also conducted in simplified geometry of a single tube to explain this nonlinear behavior. The simulation revealed that the local water flux varies nonlinearly and dramatically along the tube. The analysis was based on the inverse relationship between the increase in temperature and decrease in relative humidity, both of which seriously affect the water conductivity of the membrane.

Detection of inflow permeable zones using fluid conductivity logging in coastal aquifer (공내수 치환기법을 이용한 연안지역 대수층의 수리특성 평가)

  • Hwang Seho;Park Yunsung;Shim Jehyun;Park Kwon Gp;Choi Sun Young;Lee Sang Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.83-92
    • /
    • 2005
  • Fluid conductivity logging has been applied in the boreholes to identify the permeable fi:actures and estimate the origin of saline groundwater in coast area. Fluid replacement technique measures the fluid electrical conductivity with depth at different times in a well after the borehole is first washed out with different water by passing a tube to the borehole bottom. Then formation water flows into the borehole through aquifer such as permeable fractures or porous formation during ambient or pumping condition. Measured conductivity profiles with times therefore indicate the locations of permeable zone or fractures within the open hole or the fully slotted casing hole. As a result of fluid conductivity logging for three boreholes in the study area, it is interpreted that saline groundwater is caused by seawater intrusion through fractured rock, although the effect by land reclamation partially remains. We are planning the quantitative analysis to estimate the hydraulic characteristics using fluid replacement technique, and this approach might be usefully utilized for assessing the characteristics of seawater intrusion, the design of optimal pumping, and estimating the hydraulic properties in coastal aquifer.

  • PDF