• Title/Summary/Keyword: Tube conductivity

Search Result 161, Processing Time 0.027 seconds

The Effect of the Thermal Conductivity of a Tube and the Convective Heat Transfer on the Outer Surface of a Tube on the Energy Separation in Vortex Tubes (튜브의 열전도도와 튜브 외면에서의 대류열전달이 보텍스튜브의 에너지 분리에 미치는 영향)

  • 유갑중;이병화;최병철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.845-852
    • /
    • 2001
  • The phenomena of energy separation in vortex tubes was investigated experimentally to see the effects of the conductivity of a tube and convective heat transfer on the outer surface of a tube. The experiment was carried out with different conductivity (pyrex, stainless steel and copper) of a tube and three kinds of convective heat transfer modes (adiabatic condition, natural convection (air) and forced convection (water) on the outer surface of a tube. the results were obtained that hot exit fluid temperature was highly affected by a change of conductivity of a tube when the outer surface was cooled by the forced convection of water. However, the cold exit temperature was little affected by heat transfer modes on the outer surface in vortex tubes.

  • PDF

Effects of Tube Materials and Cooling Media on the Energy Separation in Vortex Tubes

  • Riu, Kap-Jong;Kim, Hyun-Woo;Park, In-Su;Kim, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.3
    • /
    • pp.138-146
    • /
    • 2002
  • The phenomena of energy separation in vortex tubes was investigated experimentally to see the subsidiary effect of the conductivity of tube material and cooling conditions around the outer surface of the tube. The experiment was carried out with pyrex, stainless steel and copper tubes, and the heat transfer conditions of the tubes were with insulation, without in-sulation and water cooling modes respectively The results were obtained that the hot exit fluid temperature was highly affected by a change of conductivity of a tube when the outer surface was cooled by the water, while the working fluid through the tubes was air. How-ever, the cold exit temperature was little affected by the heat transfer modes on the outer surface of the vortex tube.

Effect of open-core screw dislocation on axial conductivity in semiconductor crystals

  • Taira, Hisao;Sato, Motohiro
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.171-182
    • /
    • 2013
  • The alternating current (AC) conductivity in semiconductor crystals with an open-core screw dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective potential field which affects the electronic transport properties of the system. Therefore, from a technological view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals using the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the amplitude of the AC conductivity was large enough to be measured in experiments. The measurable conductivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic flux tube, despite the apparent similarity in their electronic eigenstates.

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow Cathode Discharge Tube에서의 광검류 신호 측정)

  • Lee, Jun-Hoi;Yoon, Man-Young;Kim, Song-Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.874-877
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity. This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with the lowest metastable atoms density at low current.

  • PDF

Conjugate Heat Transfer by Natural Convection from a Horizontal Heat Exchanger Tube with a Long Vertical Longitudinal Plate Fin (단일(單一) 긴 수직평판(垂直平板)핀을 가진 수평전도관(水平傳導管)으로 부터의 자연대류(自然對流))

  • Bai, Dai Sok;Kwon, Sun Sok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 1989
  • Laminar natural convection heat transfer from a horizontal heat exchanger tube with one infinitely long vertical plate fin has been studied by a finite-difference numerical procedure. In predicting convective heat transfer from a circular tube, the thermal boundary condition at solid fluid interface is usually assumed to be isothermal. However, in reality, the thermal boundary condition is not isothermal, and the tube has the thickness and the conductivity. So the temperature at the interface is not known a priori to the calculation. This problem has the conjugate phenomena which occur between the tube conduction and external natural convection, and between the fin conduction and external natural convection. Numerical results are obtained to determine the effects of the conductivity of solid wall and the thickness of tube wall on heat transfer. It is found that the conduction causes significant influence on the natural convection heat transfer at low K and high ${\delta}$.

  • PDF

Development of a High Performance Bubble Jet Loop Heat Pipe Using the Enhanced Nucleate Boiling Surface in Evaporating Section (핵비등 촉진 전열면 증발부를 이용한 고성능 Bubble Jet Loop Heat Pipe 개발)

  • Kim, Jong-Soo;Shin, Jong-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.363-367
    • /
    • 2015
  • In this study, a high performance Bubble Jet Loop Heat Pipe (BJLHP) was developed using the enhanced nucleate boiling surfaces in an evaporating section. A sintered tube and GEWA-T(Wieland) tube were used enhance nucleate boiling. The thermal performance of these BJLHP was compared with the conventional smooth tube BJLHP with an effective thermal conductivity. This experiment was conducted under the following conditions : working fluid, charging ratio and input power of R-141b, 50%vol., 75W and 100W, respectively. As a result, the effective thermal conductivity of BJLHP with a sintered tube in the evaporating section was 300% higher than the smooth tube BJLHP.

A study on the performance of the finned tube heat exchanger affected by the frosting using CFD tool (전산해석을 이용한 착상이 핀튜브 열교환기 성능에 미치는 영향에 관한 연구)

  • Kim, Sung-Jool;Choi, Ho-Jin;Ha, Man-Yeong;Bang, Seon-Wook
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2738-2743
    • /
    • 2008
  • We conducted a study by computational simulation about the effects of frost thickness on the pressure drop and heat transfer characteristics as whole heat exchanger configuration changes. In order to perform the analysis for validation, we assumed that frost properties have constant values and the frost layers that are formed on the fin and tube surfaces are uniform. In order to find the constant thermal conductivity of frost layer, a variety of frost thermal conductivities are performed in our work and compared with the results by Lee et al. [4] and Yang et al. [5] proposed many experimental data about the 2-rows and 2-columns finned tube heat exchanger. The numerical results agreed well with the experimental data when frost conductivity is 0.07W/mK. After the validation had performed, we applied this procedure to the finned tube heat exchanger of domestic refrigeration and investigated the thermo-hydraulic characteristic of the heat exchanger affected by frost thickness according to the inlet velocities and temperatures of air considering the configuration change such as fin pitch.

  • PDF

A Study on the Thermal Behavior of Vertical Borehole Heat Exchanger with 1-Dimensional Model (1차원 모델에 의한 지중열교환기의 열거동 해석)

  • Lee, Se-Kyoun;Kim, Dae-Ki;Woo, Joung-Son;Park, Sang-Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2005
  • A one-dimensional heat transfer model for the vertical borehole system is derived in this study to predict the thermal behavior of the system and surrounding soil. In this model the U-tube is replaced with one effective tube of effective diameter which is surrounded by concentric grout region. All thermal resistances of borehole are counted in the grout region with effective thermal conductivity of grout. Effective thermal conductivity of grout and sand are calculated through parameter estimation. The validity of this model is accomplished through comparison of the predicted temperature profiles of the model with experimental data.

Measurement of Optogalvanic Signal in Hollow Cathode Discharge Tube (Hollow cathode discharge tube에서의 광검류 신호 측정)

  • 이준회;정기주
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2002
  • The optogalvanic signals were measured using hollow cathode discharge tube with argon as buffer gas at change of discharge currents. A change of ionization rate due to electron collision causes an increase or decrease of the electric conductivity, This change in electric conductivity generates the optogalvanic signal. We conclude that optogalvanic signal has close relation with change of the lowest metastable atoms density at low current.

A study on the reduction of fuel consumption for fish farm during winter season (월동시 양식장의 연료 절감 대책)

  • Park, Jong-Un;Han, Kyu-Il
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.1
    • /
    • pp.31-43
    • /
    • 1995
  • For the fuel saving in the fish farm, the heat transfer performances of various tubes, XL-tube, copper-tube, copper-Nikel-tube and Al-brass-tube, were compared. The XL-tube, which is most commonly used for heating water, showed the poorest heater transfer performance, while the Al-Brass tube shows the best performance. As far as average temperature difference of four tubes concerns, XL-tube is $3.34^{\circ}C$, Copper tube is $10.34^{\circ}C$, Copper-Nikel tube is $11.3^{\circ}C$, Al-Brass-tube is $12^{\circ}C$, The best heat transfer performance of Al-Brass tube results from the enhancement of heat transfer coefficient caused by fin effect and good conductivity of the material.

  • PDF