• 제목/요약/키워드: Tube bending : Hydroforming

검색결과 34건 처리시간 0.023초

유한요소법을 이용한 자동차 로어암의 액압성형 해석 (Analysis of Hydroforming Process for an Automobile Lower Arm by FEM)

  • 김정;장유철;강성종;강범수
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.534-542
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes, has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program HydroFORM-3D, the hydroforming process for an automobile lower arm is analyzed and designed. The manufacturing process for a lower arm consists of tube bending, preforming, and final hydroforming. To accomplish successful hydroforming process design, thorough investigation on proper combination of process parameters such as internal hydraulic pressure, axial feeding, and tool geometry is required. This paper describes the influences of forming conditions on the hydroforming of a lower arm by using simulation to predict strain and tube shape during bending, preforming, and final hydroforming processes.

  • PDF

하이드로포밍 제품의 가공경화를 가지는 벤딩공정에 의한 영향분석 (The study of effect for bending operation having working hardening on hydroforming parts)

  • 김광순;김윤규;박두수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.209-214
    • /
    • 2007
  • This study is concerned with working hardening of bending operation on hydroforming parts. Generally, hydroforming parts having the complicated shape of the automobile, require a 3-dimentional bending operation. This operation involves several variations in the tube which are the thickness, the mechanical characteristics, the hardness, the circumference etc., on original tube. So, we study those variations and the affect on the hydroforming operation and hydroforming parts. We used two methods, one of which was computer simulation and the other the actual test in the plant.

  • PDF

자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석 (Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF

일체화 성형 서브프레임 개발을 위한 벤딩 공정의 영향성 연구 (A Study of Bending Process for Development of Subframe by Hydroforming)

  • 서창희;이우식;김헌영;임희택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.262-265
    • /
    • 2003
  • In the present study, subframe was developed using hydroforming technology. The manufacturing process for subframe consists of tube bending, pre-forming and hydroforming. The effects of bending process for manufacturing hydroformed subframe were researched. And the variables of bending process were studied by FEM simulation. The bending method is rotary draw bending that is the most popular, cost-effective bending method for thin walled tubes.

  • PDF

Hydroforming을 위한 Weld line 최적배치에 관한연구 (A Study on the Weld Line Position Optimization for Hydroforming)

  • 전병희
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.160-168
    • /
    • 2000
  • Hydroforming is a metal forming process that enables circular metal tubes to be formed in to the parts with the complex cross section along the curved axial direction. Recently this hydroforming process is largely used for the production of the automotive parts. This paper presents the results of tube bending and hydroforming simulations in cases of the varying weld line positions of the tube. Ten cases of prebending and hydroforming simulations are carried out to find the optiaml weld line position.

  • PDF

Weld line위치에 따른 Hydroforming특성에 관한 연구 (A Study on the Weld Line Position for Hydroforming)

  • 강대철;윤석만;전병희;오수익;전한수
    • 소성∙가공
    • /
    • 제9권5호
    • /
    • pp.504-511
    • /
    • 2000
  • Hydroforming is a forming process enabling circular metal tubes to be produced in complex cross sections along curved axial paths. This forming process is widely used to manufacture parts in automotive industry. This paper presents bending and forming results to following angle of weld line positions. These compare to good bending, bad bending and without weld line model case. And then this result of after forming compare to each forming cases. The purpose of this paper is found that adaptive weld line position for bended final shape.

  • PDF

로터리 드로우 벤더를 이용한 타원형 튜브의 유한요소 벤딩 해석 (Finite Element Bending Analysis of Oval Tubes Using Rotary Draw Bender for Hydroforming Applications)

  • 이호국
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.71-74
    • /
    • 2005
  • In manufacturing automotive parts, such as engine cradles, frame rails, subframes, cross-members, and other parts from circular tubes, pre-bending and pre-forming operations are often required prior to the subsequent tubular hydroforming process. During some pre-forming operations, the cross section of a bent circular tube is crushed into an oval-like shape to ensure proper geometry and sufficient clearance in the hydroforming dies. For such applications, the use of oval Instead of circular tubes could be an effective means of eliminating the pre-forming step. The oval tube could also be produced with less thinning and with less strain on the outside of the bend when controlled by a booster system without the use of mandrel. Hence, the understanding of the issues that occur in the bending of oval tubes is worthy of Investigation. This paper presents parametric studies on the bending of oval tubes without a mandrel. The finite element modeling technique is used to examine the deformation characteristics for both circular and oval tubes. In the simulations, the bending process parameters of bend radius, aspect ratio of the tube ovalness, and tube wall thickness are varied. Observations are made to obtain a hoop-buckle limit diagram in terms of a non-dimensional shape degradation factor. Suggestions based upon developed criteria are made on the acceptability of bend tubes suitable for hydroforming applications without the need ofa pre-forming step or the used of a mandrel.

  • PDF

스테인레스 관재의 굽힘 특성 분석 (Analysis of Stainless Steel Tubes Bendability)

  • 이건엽;이혜경;박성필;김윤규;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.244-247
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important factor for successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, variation of the diameter, thickness, hardness. This study shows the analysis of bending through the stainless steel tubes bent to rotary draw bending machine.

  • PDF

스테인리스 강관의 굽힘 특성 연구 (A Study on the Bendability of Stainless Steel Tubes)

  • 이건엽;이호진;이혜경;김윤규;문영훈
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.336-341
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important process for the successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, welding methods, mechanical properties and hardness. Through the stainless steel tubes bent by rotary draw bending machine, this study shows the following : (1) The influence on spring back ratio variation with stress level in the welded bent tube. (2) The Cross-section ovality variation with weld seam position and bending radius. (3) The relation between elongation and thickness reduction of tension zone with weld seam position and bending radius. (4) Workability evaluation of bent stainless steel tubes through the hardness of materials and hardness increment. The results of this study may help to understanding of characteristics on bendability of stainless steel tubes.