• Title/Summary/Keyword: Tube array

Search Result 142, Processing Time 0.023 seconds

Fluidelastic Instability of Flexible Cylinders in Tube Bundle Subjected to Cross Air-flow (공기-횡 유동장에 놓인 유연성 실린더 관군의 유체탄성 불안정)

  • Sim, Woo-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.498-506
    • /
    • 2007
  • Using wind tunnel, experimental approaches were employed to investigate fluidelastic instability of tube bundles, subjected to uniform cross flow. There are several flow-induced vibration excitation mechanisms, such as fluidelastic instability, periodic wake shedding resonance, turbulence-induced excitation and acoustic resonance, which could cause excessive vibration in shell-and tube heat exchanges. Fluidelastic is the most important vibration excitation mechanism for heat exchanger tube bundles subjected to cross flow. The system comprised of cantilevered flexible cylinder(s) and rigid cylinders of normal square array, In order to see the characteristics of flow in tube bundles, particle image velocimetry was used. From a practical design point of view, Fluidelastic instability may be expressed simply in terms of dimensionless flow velocity and dimensionless mass-damping. The threshold flow velocity for dynamic instability of cylinder rows is evaluated and the data for design guideline is proposed for the tube bundles of normal square array.

Numerical simulation for predicting thermal performance of a fin-tube heat exchanger using one-dimensionalized refrigerant circuit (1 차원 배열화된 냉매유로를 이용한 휜-관 열교환기 성능예측)

  • Kim, Doo-Hwan;Ye, Huee-Youl;Lee, Kwan-Soo;Cha, Woo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2011-2016
    • /
    • 2008
  • A new method is presented for developing a simulation program which can analyze the heat transfer characteristics of fin-tube heat exchanger. This method is able to describe several types of refrigerant circuit arrangement. The delivery path of air and refrigerant properties is simplified by transforming three-dimensional array into one-dimensional array. By comparing simulated results with experiment results, the deviation was 8.2%. Several fin-tube heat exchangers of different design factors and operating conditions were simulated using this program. It was shown that this program could be used for designing practical fin-tube heat exchangers.

  • PDF

Performance Evaluation of a Fin-Tube Heat Exchanger Using One-Dimensionalized Refrigerant Circuit (냉매유로를 1차원 배열화한 휜-관 열교환기 성능해석)

  • Kim, Doo-Hwan;Ye, Huee-Youl;Lee, Kwan-Soo;Cha, Woo-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.833-843
    • /
    • 2008
  • A new method is presented for developing a simulation program which can analyze the heat transfer characteristics of fin-tube heat exchanger. This method is able to describe several types of refrigerant circuit arrangement. The delivery path of air and refrigerant properties is simplified by transforming three-dimensional array into one-dimensional array. By comparing simulated results with experiment results, the deviation was 8.2%. Several fin-tube heat exchangers of different design factors and operating conditions were simulated using this program. It was shown that this program could be used for designing practical fin-tube heat exchangers.

Characteristic Analysis of Eddy Current Array Probe Signal in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치해석을 이용한 표준보정시험편의 배열형 와전류 탐촉자 신호 특성 해석)

  • Kim, Ji-Ho;Lee, Hyang-Beom
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.330-337
    • /
    • 2010
  • In this paper, 3-dimensional electromagnetic numerical analysis is performed about the eddy current(EC) array probe characteristic which is the next generation probe for accurate diagnosis of steam generator(SG) in nuclear power plants(NPPs). ASME(American Society of Mechanical Engineers) Standard and X-probe combo calibration standard tube are selected for acquisition of eddy current testing(ECT) signals and this result of compared with the real test signals for reasonability of result. Based on the analysis result of calibration standard tube, ECT signals that are about the defects of pitting, stress corrosion cracking(SCC), multiple SCC and wear is obtained. Material of specimen was Inconel 600 which is usually used for SG tubes in NPPs. The operation frequency of 300 kHz were used. The signal characteristics could be observed according to the various defects. The results in this paper can be helpful when the ECT signals from EC array probe are evaluated and analyzed.

A Numerical Study on the Effect of Fin Pitch and Fin Array on the Heat Transfer Performance of a Pre-heater (휜의 피치 및 배열 방식에 따른 프리히터의 전열 성능에 관한 연구)

  • Yoo, Ji Hoon;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.40-47
    • /
    • 2013
  • In this paper, a numerical study was performed to investigate the performance characteristics of a pre-heater. The effects of fin pitch and fin array type(in-line, staggered, leaned array) were reported in terms of Colburn j-factor and Fanning friction factor f, as a function of Re. Three-dimensional numerical simulation has been performed by using flow analysis program, FLUENT 13.0. The results show that Colburn j-factor decreases with the decrease of fin pitch attached in the annular tube. But the fin pitch has little effect on f-factor. The staggered array and leaned array show improved heat transfer performance compared with in-line array, so that Colburn j-factor was increased. It also shows that the f-factor of leaned array is the highest in the studied range of Reynolds number.

Numerical Study of Liquid Film Flow on Heat Exchanger Tube Arrangement and Configuration of Multi Effect Distillation (증발식 다중효용 담수기에서 열교환기 튜브 배열 및 형상에 따른 액막 유동에 관한 수치해석)

  • Jung, Il-Young;Yun, Sang-Kook;Joo, Hong-Jin;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.68-73
    • /
    • 2011
  • This study was performed numerical analysis in order to analyze liquid film flow of heat exchanger tube arrangement and configuration of evaporative multi effect distillation system using medium-temperature. Simulation was accomplished the two-dimensional calculations using commercial analyses program FLUENT based on the FVM(finite volume method). Fresh water generator of this study used Shell & Tubes heat exchanger with Cu_Ni tube, configuration of tube used bare tube and corrugated tube, and arrangement of tube used in-line array and staggered array. Performance of heat exchanger through the formation of liquid film was compared and analyzed. Liquid film flow occurred that falling on heat exchanger tube wall. Result of simulation showed that liquid film thickness of in-line arrangement was found 0.57mm with bare tube and 0.67mm with corrugated tube, respectively. And liquid film thickness of staggered arrangement was found 0.39mm with bare tubes and 0.62mm with corrugated tubes, respectively. Liquid film thickness of corrugated tube showed thicker than bare tube, but heat transfer rates of corrugated tube showed higher than bare tube. The reason was considered that surface area of corrugated tube was wider than bare tube. And liquid film thickness of staggered arrangement showed thinner than in-line arrangement, so thermal performance of staggered arrangement showed higher than in-line arrangement.

  • PDF

Jet-Flow-Induced Vibration of Tube Arrays (제트유동에 의한 튜우브 집합체의 진동 연구)

  • Lee, Hae;Chang, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1986
  • This paper presents a study on jet-flow-induced vibration, which has been one of the main causes of fuel damage in many pressurized water reactors. A systematic investigation was carried out experimently to identify the mechanism of jet-flow-induced vibration and to provide a design guide. Fluidelastic instability occurs when the jet velocity exceeds a critical value. The threshold of instability is given by V/f$_{n}$D=K.root.(D/h)(m$_{0}$.delta.$_{0}$/.sigma.D$^{2}$), where K is a stability constant. The effect of axial flow velocity and stand-off distance of a tube array on the stability of the array were investigated. A design guide is proposed.posed.

A Study on the Forming Process Optimization of a Small Tube (소구경 관단 성형공정 최적화)

  • Lee, Jung-Hwan;Lee, Seung-Hoon;Oh, Hyun-Ok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.71-78
    • /
    • 2010
  • The end shape of tube for automobile power steering system has influence on the ability of performance. In this case study, we attempted to optimize the forming process of a small tube using Taguchi experimental design methodology. A preliminary experiment was conducted and four main control factors were selected. The experiment was set up as an $L_9(3^4)$ orthogonal array, and determined the optimal levels of the four factors through the analysis of the experimental results. As a result, the performance characteristic(close adhesion power) of the product was improved about 36%. In addition, the process capability index $C_{pk}$ is enhanced from 0.94 to 6.85.

An Experimental Study on the Effects of Design Factors for the Performance of Fin-Tube Heat Exchanger Under Frosting Conditions (착상시 설계인자에 따른 핀-관 열교환기의 성능변화에 관한 실험적 연구)

  • 이관수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2657-2666
    • /
    • 1995
  • In this study, the effects of design factors of finned-tube heat exchanger, such as fin spacing and fin array on the frost growth and heat exchanger performance are investigated under a frosting condition. The results show that the amount of frost, frost density and blockage ratio of air flow passage increase with decreasing fin spacing. Heat transfer rate increases momentarily at the initial stage of frosting and then decreases. After that heat transfer rate continues to increase again to reach a maximum value and then decreases dramatically. It is shown that the time required for heat transfer rate to reach a maximum value becomes shorter with decreasing fin spacing, and after a maximum value, heat transfer rate decreases very fast. The maximum allowable blockage ratio is introduced to determine the operation limit of a finned-tube heat exchanger operating under frosting condition and is obtained as a function of fin spacing. It is also shown that heat transfer rate of heat exchanger with staggered fin array increases about 17% and the amount of pressure drop of air increases about 1~2 mmH$_{2}$O, compared with those of in-line type heat exchanger under frosting condition.

Effects of Pitch on Pool Boiling from Horizontal Tube Array (피치가 수평 튜브 배열의 풀비등에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.719-726
    • /
    • 2017
  • An experimental study was performed to investigate the combined effects of the pitch and heat flux of nearby tubes on boiling in a pool as well as the heat transfer from a horizontally-installed tube bundle. For this test, two smooth stainless steel tubes (19 mm outside diameter) were used, and the water was at atmospheric pressure. The pitch of these tubes was varied between 28.5 mm and 95 mm, and the heat flux of the nearby tube altered between 0 and $90kW/m^2$. Enhancements in heat transfer were clearly observed when the heat flux of the nearby tube increased while the heat flux of the test section remained below $40kW/m^2$. The tube pitch was found to have a negligible effect on heat transfer when the pitch was greater than four times larger than the tube diameter. The circulating flow, convective flow, and liquid agitation were all seen to enhance heat transfer; however, the interaction between the flow and coalescence of bubbles was detrimental to heat transfer.