• 제목/요약/키워드: Tube Transport

검색결과 164건 처리시간 0.022초

맥동관의 엔탈피유동에 대한 2차원 해석 (Two-Dimensional Analysis of Enthalpy Flow in a Pulse Tube)

  • 백상호;장승철;정은수
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권1호
    • /
    • pp.42-47
    • /
    • 1999
  • Enthalpy transport in a pulse tube was investigated by two-dimensional analysis of mass. momentum an energy equations of the gas as well as energy conservation of the tube wall. The mean temperature of the gas and the tube wall was obtained directly by assuming that the outer surface of a pules tibe wall is adiabatic. Axial profile of mean temperature is small. but it deviates significantly from linear profile when the dimensionless frequency is large. Effect of operating frequency. tube wall thickness, velocity ratio and velocity phase angle between both ends of a pulse tube on net enthalpy flow were shown.

  • PDF

A New LMR SG with a Double Tube Bundle Free from SWR

  • Sim Yoon-Sub;Kim Seong-O;Kim Eui Kwang;Hahn Do Hee
    • Nuclear Engineering and Technology
    • /
    • 제35권6호
    • /
    • pp.566-580
    • /
    • 2003
  • To resolve the concern of the SWR possibility in LMR and improve the economic feature of LMR, relative performance of various SG designs using a double tube bundle configuration is evaluated and a new SG design concept is proposed. The new steam generator design houses two tube bundles that are functionally different and its tube bundle region is radially divided into two. It prevents the occurrence of sodium water reaction while sodium is still used as the coolant for the primary heat transport system. The feasibility of the SG with a double tube bundle for actual use in an LMR plant is evaluated by setting up the skeleton of the NSSS for various possible configurations of the SG tube bundles. The evaluation revealed the relative advantages and disadvantages of the configurations and the new SG design concept performs good and can be actually used in an LMR plant.

수직관 내 초임계상태 물의 천이상태 대류열전달현상에 관한 연구 (A Study on the Transient Convective Heat Transfer for Supercritical Water in a Vertical Tube)

  • 이상호
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1095-1105
    • /
    • 2005
  • Numerical analysis has been carried out to investigate transient turbulent convective heat transfer in a vertical tube for supercritical water near the thermodynamic critical point. Heat transfer and fluid flow in the tube we strongly coupled due to the large variations of thermodynamic and transport properties such as density, specific heat, and turbulent viscosity. As pressure in the tube approaches to the critical pressure, the properties variation with time becomes larger. Heat transfer coefficient rapidly decreases along the tube near the pseudocritical temperature at the tube wall for $P_R<1.2$. Stanton number variation with time is largely reduced in the region of gas-like phase in comparison with Nusselt number. Turbulent viscosity ratio close to the wall increases near the pseudocritical temperature and it gradually decreases with time.

열교환기내 리브드 튜브의 유동 특성에 관한 수치해석적 연구 (A Study on Numerical Analysis for Flow Characteristics in Ribbed Tube)

  • 전정도;전언찬;정희균;이치우
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.115-120
    • /
    • 2011
  • A ribbed tube consumes more power to transport the fluid by comparing with flat one. After the tangential velocity component occurs, its contact area with the ribbed tube becomes large and it enables the effective energy transportation. The flow characteristics vary according to the geometry of tube rib. This study aims to investigate the flow characteristics of fluids working at Reynolds numbers of 20,000, 40,000, 60,000 and 80,000 with the air at $15^{\circ}C$ in the ribbed test tube high 1mm and wide 8.48mm. As the flow characteristics are included with the states of fully developed hydrodynamical region, axial velocity vector distribution and non-dimensional velocity distribution, they are shown with the physical validity.

다공관형 초음속 배기노즐의 공력소음에 관한 연구 (A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Perforated Tube)

  • 이동훈
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 1999
  • A perforated tube nozzle as an exhaust noise suppressor of a high-speed civil transport(HSCT) is proposed. The experimental results for the near and far field sound. the visualization of jet structures and the static pressure distributions in the jet passing through a perforated tube are presented and discussed in comparison with those for a simple tube. It is shown that the perforated tube has an excellent performance to greatly reduce the shock-associated noise and that also the turbulent mixing noise is reduced in the range of a limited jet pressure ratio. This considerable noise reduction is due to the pressure relief caused by the through-flow through the perforated holes. Such a pressure relief results in the transformation of normal shock waves into weak Mach waves of X -type and increases the thrust force of the perforated tube nozzle.

  • PDF

내부와 외부에서 증발과 응축이 발생하는 수직관에 대한 유동 해석 (Film Flow Analysis for a Vertical Evaporating Tube with Inner Evaporation and Outer Condensation)

  • 박일석
    • 대한기계학회논문집B
    • /
    • 제32권8호
    • /
    • pp.621-628
    • /
    • 2008
  • A numerical study for the flow, heat and mass transfer characteristics of the evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation occurs at the free surface of the inside film. The transport equations for momentum and energy are parabolized by the boundary-layer approximation and solved by using the marching technique. The calculation domain of 2 film flow regions (evaporating and condensation films at the inside and outside tube wall respectively) and tube wall is solved simultaneously. The coupling technique for the problem with the 3 different regions and the 2 interfaces of them has been developed to calculate the temperature field. The velocity and temperature fields and the amount of the condensed and evaporated mass as well as the position where the evaporating film is completely dried out are successfully predicted for various inside pressures and inside film inlet flow rates.

원자로 기기 열수력 해석 코드에서 붕소 수송 방정식의 구현 (THE IMPLEMENTATION OF BORON TRANSPORT EQUATION INTO A REACTOR COMPONENT ANLAYSIS CODE)

  • 박익규;이승욱;윤한영
    • 한국전산유체공학회지
    • /
    • 제18권4호
    • /
    • pp.53-60
    • /
    • 2013
  • The boron transport model has been implemented into the CUPID code to simulate the boron transport phenomena of the PWR. The boron concentration conservation was confirmed through a simulation of a conceptual boron transport problem in which water with a constant inlet boron concentration injected into an inlet of the 2-dimensional vertical flow tube. The step wise boron transport problem showed that the numerical diffusion of the boron concentration can be reduced by the second order convection scheme. In order to assess the adaptability of the developed boron transport model to the realistic situation, the ROCOM test was simulated by using the CUPID implemented with the boron transportation.

$CO_2$ 단열 모세관내 유동 특성 (Flow Characteristics in an Adiabatic Capillary Tube of Carbon Dioxide)

  • 노건상;손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.537-544
    • /
    • 2008
  • In this paper, flow characteristics of an adiabatic capillary tube in a transcritical $CO_2$ have been investigated employing the homogeneous model. The model is based on fundamental equations of mass, energy and momentum which are solved simultaneously. Two friction factors(Churchill) and viscosity(McAdams) are comparatively used to investigate the flow characteristics. Supercritical and subcritical thermodynamic and transport properties of $CO_2$ are calculated employing EES property code. Flow characteristics analysis of $CO_2$ adiabatic capillary tube is presented to offer the basic design data for the operating parameters. The operating parameters considered in this study include inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature and inner diameter tube. The main results were summarized as follows : inlet temperature and pressure of an adiabatic capillary tube, evaporating temperature, mass flowrate and inner diameter of $CO_2$ adiabatic capillary tube have an effect on length of an adiabatic capillary tube.

다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교 (A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube)

  • 서영호;박기정;정동수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

공랭형 수직원관 흡수기에서의 열 및 물질전달 해석 (Analysis of heat and mass transfer in a vertical tube absorber cooled by air)

  • 김선창;오명도;이재헌
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3293-3303
    • /
    • 1996
  • Numerical analyses have been performed to estimate the absorption heat and mass transfer coefficients in absorption process of the LiBr aqueous solution and the total heat and mass transfer rates in a vertical tube absorber which is coolING ed by air. Axisymmetric cylindrical coordinate system was adopted to model the circular tube and the transport equations were solved by the finite volume method. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by water vapor in tube. Effects of film Reynolds number on heat and mass transfer coefficients have been also investigated. Especially, effects of tube diameter have been considered to observe the total heat and mass transfer rates through falling film along the tube. Based on the analysis it has been found that the total mass transfer rate increases rapidly in a region with low film Reynolds number(10 ~ 40) as the film Reynolds number increases, while decreases beyond that region. The total heat and mass transfer rates increase with increasing the tube diameter.