• Title/Summary/Keyword: Tube Specimen

Search Result 261, Processing Time 0.026 seconds

Application of Laser-based Ultrasonic Technique for Evaluation of Corrosion and Defects in Pipeline (배관부 부식 및 결함 평가를 위한 레이저 유도 초음파 적용 기술)

  • Choi, Sang-Woo;Lee, Joon-Hyun;Cho, Youn-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • There are many tube and pipeline in nuclear power plant under high temperature and high pressure. Erosion and corrosion defects were expected on these tube and pipe-line by environmental and mechanical factors. These erosion and corrosion defects ran be evaluated by ultrasonic technique. In these study, Scanning Laser Source(SLS) technique was applied to detect defect and construct image. This technique also makes detection possible on rough and curved surfaces such as tube and pipe-line by scanning. Conventional ultrasonic scanning technique requires immersion of specimen or water jet for transferring ultrasonic wave between transducer and specimen. However, this SLS technique does not need contacting and couplant to generate surface wave and to get flaw images. Therefore, this SLS technique has several advantages, for complicated production inspection, non-contact, remote from specimen, and high resolution. In this study, SLS images were obtained with various conditions of generation laser ultrasound and receiving in order to enhance detectability of flaws on the tube. Stress corrosion cracks were produced on tube and images of stress corrosion cracks were constructed by using SLS technique.

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.

Application of Acoustic Emission Technique and Friction Welding for Excavator Hose Nipple (굴삭기용 호스 니플의 마찰용접과 음향방출기법의 적용)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.436-442
    • /
    • 2013
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, the feasibility of industry application was determined by analyzing the mechanical properties of weld region for a specimen of tube-to-tube shape for excavator hose nipple with friction welding, and optimized welding variables were suggested. In order to accomplish this object, friction heating pressure and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. An acoustic emission(AE) technique was applied to evaluate the optimal friction welding conditions nondestructively. AE parameters of accumulative count and event were analyzed in terms of generating trend of AE signals across the full range of friction weld. The typical waveform and frequency spectrum of AE signals which is generated by friction weld were discussed. From this study the optimal welding variables could be suggested as rotating speed of 1300 rpm, friction heating pressure of 15 MPa, and friction heating time of 10 sec. AE event was a useful parameter to estimate the tensile strength of tube-to tube specimen with friction weld.

Fabrication and Evaluation of 5 vol%CNT/Al Composite Material by a Powder in Sheath Rolling Method (분말시스압연법에 의한 5 vol%CNT/Al 복합재료의 제조 및 평가)

  • Hong, Dongmin;Kim, Woo-Jin;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.607-612
    • /
    • 2013
  • A powder in sheath rolling method was applied to the fabrication of a carbon nano tube (CNT) reinforced aluminum composite. A 6061 aluminum alloy tube with outer diameter of 31 mm and wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powder and CNTs with a volume content of 5% was filled in the tube by tap filling and then processed to an 85% reduction using multi-pass rolling after heating for 0.5 h at $400^{\circ}C$. The specimen was then further processed at $400^{\circ}C$ by multi-pass hot rolling. The specimen was then annealed for 1 h at various temperatures that ranged from 100 to $500^{\circ}C$. The relative density of the 5vol%CNT/Al composite fabricated using powder in sheath rolling increased with increasing of the rolling reduction, becoming about 97% after hot rolling under 96 % total reduction. The relative density of the composite hardly changed regardless of the increasing of the annealing temperature. The average hardness also had only slight dependence on the annealing temperature. However, the tensile strength of the composite containing the 6061 aluminum sheath decreased and the fracture elongation increased with increasing of the annealing temperature. It is concluded that the powder in sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.

Determination of Plane-wave Reflection Coefficient in Underwater Acoustic Pulse Tube Using Two-dimensional Fourier Filtering (이차원 푸리에 필터링을 이용한 수중음향 펄스 튜브에서의 평면파 반사계수 결정)

  • Kim, Wan-Gu;Kang, Hwi Suk;Yoon, Suk Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.493-498
    • /
    • 2015
  • Complex acoustic signals can be formed in a water-filled acoustic pulse tube under some exciting conditions. It makes difficult to measure plane-wave reflection coefficient with the pulse tube for low frequency bands. In this study, using COMSOL Multiphysics we show that the tube wall excitation generates complex acoustic field of nonplanar mode as well as planar one. From such field incident or reflected planar mode can be decomposed respectively with a modal decomposition method, two-dimensional Fourier filtering. It makes possible to more accurately determine the plane-wave reflection coefficient of acoustic specimen with time gating.

Hydrogen Embrittlement of Zr-2.5Nb Pressure Tube at Room Temperature by Precipitated Hydride (수소화물에 의한 Zr-2.5Nb 압력관의 상온 수소취화 거동)

  • Oh, Dong-Joon;Boo, Myung-Hwan;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.455-463
    • /
    • 2003
  • The aim of this study is to investigate the hydrogen embrittlement of Zr-2.5Nb CANDU pressure tube at room temperature. The transverse tensile and fracture toughness tests were performed at various hydrogen concentrations using transverse tensile specimens and CCT (curved compact tension) specimens. These specimens were directly machined from the pressure tube retaining original curvatures. Based on the results of these tests. the hydrogen embrittlement phenomenon was clearly observed and fracture toughness parameters of Zr-2.5Nb pressure tube materials such as, $K_{J(0.2)}$.$J_{ML}$.dJ/da, were dramatically decreased with the increasement of the hydrogen concentration. From microscopic observation by SEM and TEM, it was also revealed that various shapes dimples, fissures and quasi-cleavage were found at the hydrogen-absorbed materials with hydrides while traditional shape dimples were generally located at the as-received materials Through the comparison of the hydride and fissure lengths with the hydrogen concentration the new evaluation method of hydrogen embrittlement was suggested.

An Experimental Study on the Evaluation of Fire-Resist Performance of High-Strength Concrete Filled steel Tube Column at Fire (화재가열을 받은 고강도 콘크리트를 충전한 CFT 기둥의 내화성능 평가에 관한 실험적 연구)

  • Lee, Hyoung-Jun;Lee, Tae-Gyu;Kim, Young-Sun;Han, Hee-Chul;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.193-197
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) that is an excellent internal force and deformation capacity because material and method are required to be diversification and High-Performance according to increase the super-high structure. And it is proposed to use high-strength Concrete Filled steel Tube Column. But it is difficult quantitative evaluation about fire-resist performance of CFT because steel tube bind concrete. Also, the case of high strength CFT is feared that spalling occur inside. Therefore, this study made CFT specimen that determine the factor(which is strength of concrete) and then CFT column was exposed to heating controlled as closely as possible the ISO-834 standard fire curve. Also, it tried to analyze internal temperature through nonlinear transient heat flow analysis.

  • PDF

Welding of Inconel Tube with Pulsed Nd:YAG Laser (펄스형 Nd:YAG 레이저 빔에 의한 Inconel Tube의 용접)

  • Kim, J.D.;Chang, W.;Chung, J.M.;Kim, C.J.
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.82-87
    • /
    • 1999
  • The basic remote sleeve repair-welding technology by the pulsed Nd:YAG laser for increasing the lifetime of the steam generator tube in a nuclear power plant has been developed. The relationship between the connection width and welding parameters have been investigated for the fundamental research to apply the sleeve-repair-welding technique to the nuclear industry. The Inconel 600 tube and Inconel 690 sleeve used for high temperature and high pressure service were welded as round lap welding by Nd:YAG laser. It was observed that the tensile shear strength, 340MPa of the welded specimen is equivalent to about 60% of that of the base metal (Inconel 600), 550MPa. The difference between the hardness of the base metal and that of the laser welds was about 10%. Ductile fracture was partly occurred in the weld but the cracking has not been observed. In spite of absence of the crack, the strength of welds was not sufficient in terms of the tensile shear strength.

  • PDF

Influence of slenderness on axially loaded square tubed steel-reinforced concrete columns

  • Yan, Biao;Gan, Dan;Zhou, Xuhong;Zhu, Weiqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • This paper aims to investigate the axial load behavior and stability strength of square tubed steel-reinforced concrete (TSRC) columns. Unlike concrete filled steel tubular (CFST) column, the outer steel tube of a TSRC column is mainly used to provide confinement to the core concrete. Ten specimens were tested under axial compression, and the main test variables included length-to-width ratio (L/B) of the specimens, width-to-thickness ratio (B/t) of the steel tubes, and with or without stud shear connectors on the steel sections. The failure mode, ultimate strength and load-tube stress response of each specimen were summarized and analyzed. The test results indicated that the axial load carried by square tube due to friction and bond of the interface increased with the increase of L/B ratio, while the confinement effect of tube was just the opposite. Parametric studies were performed through ABAQUS based on the test results, and the feasibility of current design codes has also been examined. Finally, a method for calculating the ultimate strength of this composite column was proposed, in which the slenderness effect on the tube confinement was considered.

AN EXPERIMENTAL STUDY ON PENETRATION OF DYE IN FILLING MATERIALS (수종(數種) 수복물(修復物)의 색소침투(色素浸透)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Myung-Chong
    • Restorative Dentistry and Endodontics
    • /
    • v.4 no.1
    • /
    • pp.29-34
    • /
    • 1978
  • The purpose of this study was to measure penetration of dye stuff(5% Methylene blue, Hematoxylin, Crystal violet and Safranin-O) on silicate cement, Adaptic, Hi-pol and unfilled resin. Each filling material was mixed on the mixing pad and the mixed material was inserted with condensation force of 500gr, 1000gr and 2000gr and without condensation force into preformed glass tube (10mm in diameter and 10mm in height). The specimen was stored in the air for 24 hours, then specimen was immersed in various dye solution (5% methylene blue, hematoxin, crystal violet and safranin-O) for different period of time (l hour and 24 hours). These dye-treated specimen was cut horizontally at the middle portion and the dye penetration in cut surface was measured. Following results were obtained. 1. Pentration of various dye was excessive in silicate cement with and without Condensation force. 2. There has been no evidence of dye penetration in unfilled resin. 3. Dye penetration occurced with in 1 hour period and the extending time didn't affect the dye penetration.

  • PDF