• Title/Summary/Keyword: Tube Size

Search Result 809, Processing Time 0.025 seconds

Comparison of Performance Characteristics with Heat Exchanger Type in $CO_2$ Cycle (이산화탄소 사이클에서 열교환기의 형태 변화에 따른 성능특성 비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.657-664
    • /
    • 2010
  • The theoretical analysis of performance characteristics in a $CO_2$ cycle with the heat exchanger type was carried out. The size and performance of the fin-tube and microchannel heat exchanger were compared with operating conditions. As a result, the performance of the fin-tube gascooler and evaporator were more sensitive to the variation of operating condition compared to that of the microchannel gascooler and evaporator. Beside, the sizes of microchannel gascooler and evaporator could be decreased by 73% and 76%, respectively, compared to those of the fin-tube type gascooler and evaporator with the similar capacity. The COP and reliability of the $CO_2$ system can be increased by using a microchannel heat exchanger.

A Study on the Thermal Performance of Radiator for Computer CPU Cooling (컴퓨터 CPU 냉각용 라디에이터의 열성능에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Choi, Mi-Jin;Yun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.258-263
    • /
    • 2007
  • The performance of louver-finned flat-tube radiators for computer CPU liquid cooling were experimentally investigated. In this study, 5 samples of louver-finned flat-tube radiators with different width size (19mm, 24mm), tube hole (1, 9) and pass number (1, 2, 5) were tested in a wind tunnel. The experiments were conducted under the different air velocity ranging from 1 to 5 m/s. The water flow rate through a pass was 1.7 LPM. Inlet temperatures of air and water were $20^{\circ}C$ and $30^{\circ}C$ respectively. The results showed that the best performance in the 24mm sample considering pressure drop and heat transfer coefficient.

  • PDF

Study of Boiler Tube Micro Crack Detection Ability by Metal Magnetic Memory (금속 자기기억법 활용 보일러 튜브의 미소 결함 검출력 연구)

  • Jungseok, Seo;Joohong, Myong;Jiye, Bang;Gyejo, Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.93-96
    • /
    • 2022
  • The boiler tubes of thermal power plants are exposed to harsh environment of high temperature and high pressure, and the deterioration state of materials rapidly increases. In particular, parent material and welds of the materials used are subjected to a temperature change and various constraints, resulting in deformation and its growth, resulting in frequent leakage accidents caused by tube failure. The power plant checks the integrity of boiler tubes through non-destructive testing as it may act as huge costs loss and limitation of power supply during power station shutdown period due to boiler tube leakage. However, the current non-destructive testing is extremely limited in the field to detect micro cracks. In this study, the ability of metal magnetic memory technique to detect flaws of size that are difficult to inspect by the visual or general non-destructive methods was verified in the early stage of their occurrence.

Evaluation of Radiation Dose to Patients according to the Examination Conditions in Coronary Angiography (심장동맥 조영 검사 시 검사 조건에 따른 환자 선량 평가)

  • Yong-In Cho
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.509-517
    • /
    • 2023
  • This study analyzed imaging conditions and exposure index through clinical information collection and dose calculation programs in coronary angiography examinations. Through this, we aim to analyze the effective dose according to examination conditions and provide basic data for dose optimization. In this study, ALARA(As Low As Reasonably Achievable)-F(Fluoroscopy), a program for evaluating the radiation dose of patients and the collected clinical data, was used. First, analysis of imaging conditions and exposure index was performed based on the data of the dose report generated after coronary angiography. Second, after evaluating organ dose according to 9 imaging directions during coronary angiography, with the LAO fixed at 30°, dose evaluation was performed according to tube voltage, tube current, number of frames, focus-skin distance, and field size. Third, the effective dose for each organ was calculated according to the tissue weighting factors presented in ICRP(International Commission on Radiological Protection) recommendations. As a result, the average sum of air kerma during coronary angiography was evaluated as 234.0±112.1 mGy, the dose-area product was 25.9±13.0 Gy·cm2, and the total fluoroscopy time was 2.5±2.0 min. Also, the organ dose tended to increase as the tube voltage, milliampere-second, number of frames, and irradiation range increased, whereas the organ dose decreased as the FSD increased. Therefore, medical radiation exposure to patients can be reduced by selecting the optimal tube voltage and field size during coronary angiography, maximizing the focal-skin distance, using the lowest tube current possible, and reducing the number of frames.

Suppression of performance degradation due to cold-head orientation in GM-type pulse tube refrigerator

  • Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Hong, Yong-Ju;Koh, Deuk-Yong;Yeom, Hankil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.50-53
    • /
    • 2012
  • This paper describes experimental study on GM-type pulse tube refrigerator (PTR). In a PTR, the pulse tube is only filled with working gas and there exists secondary flow due to a large temperature difference between cold-end and warm-end. The stability of secondary flow is affected by orientation of cold-head and thus, the cooling performance is deteriorated by gas mixing due to secondary flow. In this study, a single stage GM-type pulse tube refrigerator is fabricated and tested. The cooing performance of the fabricated PTR is measured as varying cold-head orientation angle and the results are used as reference data. Then, we divided interior space of pulse tube into three segments, and fixed the various size of screen mesh at interface of each segment to suppress the performance degradation due to secondary flow. For various configuration of pulse tube, no-load test and heat load test are carried out with the fixed experimental condition of charging pressure, operating frequency and orifice valve turns. From experimental results, the fine screen mesh shows the effective suppression of performance degradation for the large orientation angle, but the use of screen mesh cause the loss of cooling capacity rather than the case of no insertion into pulse tube. It should be compromised whether the use of screen mesh in consideration of the installation limitation of a GM-type pulse tube refrigerator.

An Electrochemical Evaluation on the Crevice Corrosion of 430 Stainless Steel with Variation of Crevice Wide by Micro Capillary Tubing Method (Micro Capillary Tube 방법을 이용한 430 스테인레스강 틈의 폭변화에 따른 틈부식의 전기화학적 평가)

  • Na, Eun-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.250-254
    • /
    • 2003
  • In this study, the IR drop theory was adopted to explain the initiation of crevice corrosion in the framework of IR drop in crevice electrolyte. Furthermore, the electrochemical polarization was measured to study the mechanism of crevice corrosion for type STS430 stainless steel. lest method adopts under condition that the size of specimen is $10\times20\times5mm,\;in\;1N\;H_2SO_4+0.1N\;NaCl$ solution, and the artificial crevice gap sizes are three kinds, the Micro capillary tube size is inner diameter 0.04 mm, outer diameter 0.08 mm. Crevice corrosion is measured under the applied voltage of passivation potential -200mV/SCE, resulted from anodic potentio-dynamic polarization to the external surface along the crevice. The potential difference was measured by depth profile by Micro capillary tube which inserted in the crevice. The obtained results of this study showed that 1) As artificial crevice gap size became narrow, the current density was increased, whereas no crevice corrosion was found in the crevice gap size $3\times0.5\times16mm\;in\;1N\;H_2SO_4+0.1N\;NaCl\;solution\;at\;20^{\circ}C$ 2) potential of the crevice was about from -220 to -358mV which is lower than that of external surface potential of -200mV The results so far confirmes that the potential drop(so-called IR drop) in the crevice is one of the major mechanisms the process of crevice corrosion for 430 stainless steel.

Body Surface Area Is Not a Reliable Predictor of Tracheal Tube Size in Children

  • Uzumcugil, Filiz;Celebioglu, Emre Can;Ozkaragoz, Demet Basak;Yilbas, Aysun Ankay;Akca, Basak;Lotfinagsh, Nazgol;Celebioglu, Bilge
    • Clinical and Experimental Otorhinolaryngology
    • /
    • v.11 no.4
    • /
    • pp.301-308
    • /
    • 2018
  • Objectives. The age-based Cole formula has been employed for the estimation of endotracheal tube (ETT) size due to its ease of use, but may not appropriately consider growth rates among children. Child growth is assessed by calculating the body surface area (BSA). The association between the outer diameter of an appropriate uncuffed-endotracheal-tube (ETT-OD) and the BSA values of patients at 24-96 months of age was our primary outcome. Methods. Cole formula, BSA, age, height, weight and ultrasound measurement of subglottic-transverse-diameter were evaluated for correlations with correct uncuffed ETT-OD. The Cole formula, BSA, and ultrasound measurements were analyzed for estimation rates in all patients and age subgroups. The maximum allowed error for the estimation of ETT-OD was ${\leq}0.3mm$. Patients' tracheas were intubated with tubes chosen by Cole formula and correct ETT-OD values were determined using leak test. ETT exchange rates were recorded. Results. One-hundred twenty-seven patients were analyzed for the determination of estimation rates. Thirteen patients aged ${\geq}72months$ were intubated with cuffed ETT-OD of 8.4 mm and were accepted to need uncuffed ETT-OD >8.4 mm in order to be included in estimation rates, but excluded from correlations for size analysis. One-hundred fourteen patients were analyzed for correlations between correct ETT-OD (determined by the leak test) and outcome parameters. Cole formula, ultrasonography, and BSA had similar correct estimation rates. All three parameters had higher underestimation rates as age increased. Conclusion. The Cole formula, BSA, and ultrasonography had similar estimation rates in patients aged ${\geq}24$ to ${\leq}96months$. BSA had a correct estimation rate of 40.2% and may not be reliable in clinical practice to predict uncuffed-ETT-size.

Comparison of Absorption Coefficient according to Test Methods (시험방법에 따른 흡음률 비교)

  • Lee, J.W.;Gu, J.H.;Park, H.K.;Kang, Dae-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.373-378
    • /
    • 2007
  • Today, the use of the sound absorptive material is increasing to improve the room acoustics in the auditorium and music hall, etc. Usually, the sound absorption materials have been used to enhance the performance of a noise barrier and improve the room acoustics in construction site. Generally, the sound absorbtion coefficients are the most important factor reflecting the sound absorbtion performance. There are two methods to measure the sound absorption coefficient. The first one is the reverberation room method, and the second is the impedance tube method. In this study, we measure the sound absorbtion coefficients using these two methods, and then we compared the results of the sound absorbtion coefficients to look into the difference of results between reverberation room method and impedance tube method. Also we compared the results of the sound absorbtion coefficients with respect to the size of sample and the volume of reverberation room. From the experiment, we could see that the sound absorbtion coefficients are measured equally for different sample size. But the sound absorbtion coefficients are measured differently according to test methods and test conditions.

Improvement of Neural Network Performance for Estimating Defect Size of Steam Generator Tube using Multifold Cross-Validation (다중겹 교차검증 기법을 이용한 증기세관 결함크기 예측을 위한 신경회로망 성능 향상)

  • Kim, Nam-Jin;Jee, Su-Jung;Jo, Nam-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.73-79
    • /
    • 2012
  • In this paper, we study on how to determine the number of hidden layer neurons in neural network for predicting defect size of steam generator tube. It was reported in the literature that the number of hidden layer neurons can be efficiently determined with the help of cross-validation. Although the cross-validation provides decent estimation performance in most cases, the performance depends on the selection of validation set and rather poor performance may be led to in some cases. In order to avoid such a problem, we propose to use multifold cross-validation. Through the simulation study, it is shown that the estimation performance of defect width (defect depth, respectively) attains 94% (99.4%, respectively) of the best performance achievable among the considered neuron numbers.

Development of decontamination equipment to remove hot particulates contaminated in hot cell at KAERI

  • Kim Gye-Nam;Narayan M.;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.258-268
    • /
    • 2005
  • A new approach has been adopted to remove the hot particulates from nuclear facilities, KAERI, South Korea, by using the new compact cyclone train, made of steel ness steel, with optional vortex finder length. Flow rate results showed a dramatic change in removal efficiency, performance was changed with the change of exit tube length. The 15 m/s flow rate was found suitable one for new equipment with the 49 mm optimum exit tube length for 76 mm cyclone body diameter. Results shows the removal efficiency for $1\;{\mu}m$ was more than $65\%$ and for $10\;{\mu}m$ was seen ${\~}97\%$. Over 15 m/s flow rate, was not shown much different in removal efficiency. The removal efficiency increased with the flow rate, and pressure drop. Cut size diameter decrease with the inlet flow rate. Cut size diameter found lowest with 49 mm exit tube length and 15 m/s flow rate. For filters the performance decreased with the inlet velocity increased.

  • PDF