• Title/Summary/Keyword: Tube Rupture

Search Result 163, Processing Time 0.018 seconds

ESTIMATING THE OPERATOR'S PERFORMANCE TIME OF EMERGENCY PROCEDURAL TASKS BASED ON A TASK COMPLEXITY MEASURE

  • Jung, Won-Dea;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.415-420
    • /
    • 2012
  • It is important to understand the amount of time required to execute an emergency procedural task in a high-stress situation for managing human performance under emergencies in a nuclear power plant. However, the time to execute an emergency procedural task is highly dependent upon expert judgment due to the lack of actual data. This paper proposes an analytical method to estimate the operator's performance time (OPT) of a procedural task, which is based on a measure of the task complexity (TACOM). The proposed method for estimating an OPT is an equation that uses the TACOM as a variable, and the OPT of a procedural task can be calculated if its relevant TACOM score is available. The validity of the proposed equation is demonstrated by comparing the estimated OPTs with the observed OPTs for emergency procedural tasks in a steam generator tube rupture scenario.

Empirical Approach for Evaluating or Upgrading EOP Strategies Using the Decision theory and Simulator

  • Kim, Sok-Chul;Lee, Duck-Hun;Kim, Hyun-Jang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.833-837
    • /
    • 1998
  • This paper presents preliminary findings regarding a modeling framework under development for use in a multi-attribute decision model for advanced emergency operating procedures(EOPs). This model provides a means for optimal decision making strategy for advanced emergency operating procedures conceptualizing the dynamic coordination of responsibilities and information in the human system interactions with advanced reactor systems. For the purpose of evaluation of the applicability of this modeling framework, an empirical case study for a post-cooldown strategy during an steam generator tube rupture (SGTR) accident was carried out. As a result, it was found empirically that the multi-attribute decision model is a useful tool for establishing advanced EOPs that reduce the operator's cognitive and decision making burden during the accident mitigation process.

  • PDF

Analysis of Burst Pressure for Wear-Damaged Steam Generator Tubes (마멸에 의해 손상된 증기발생기 전열관의 파열압력 해석)

  • Shin, Kyu-In;Park, Jai-Hak
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.16-22
    • /
    • 2003
  • Generally the rupture of steam generator tubes proceeds from significant plastic deformation before failure. In this study, the burst pressures of damaged steam generator tubes were calculated from the plastic instability analysis with the finite element method. Two wear types, flat and circumferential types were considered. An equation for the burst pressure was proposed by using the strength reduction factor and the Svensson equation. The analysis results were compared with the experiment data from published references and they showed a good agreement with the experiment data.

Detection of Oscillatory Pattern Signals and its Application to the Fault Diagnosis of a Boiler Drum-Level Control System (Oscillatory 파형감지에 의한 보일러 플랜트 드럼수위 제어계통의 고장진단)

  • Kim, Jae-Hwa;Seo, Yeol-Kyu;Jang, Tae-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.44-51
    • /
    • 1999
  • This paper proposes a new approach of plant fault diagnosis which is based on detecting the characteristic pattern signals and associating them with the corresponding faults. The new approach does not require analytic modeling of the target system but best reflects the expertise embedded in the experienced human operation by mimicking them in a systematic way. This paper intends to illustrate the feasibility of the proposed by developing the algorithms to detect and estimate the typical characteristic pattern signals, I. e., oscillatory patterns, and applying them to the diagnosis of various faults of a 500MW boiler control system including tube rupture, feed-water leak, and controller failure.

  • PDF

Transient Multicomponent Mixture Analysis Based On an ICE Numerical Technique for the Simulation of an Air Inggess Accident in an HTGR

  • Lim, Hong-Sik;No, Hee-Cheon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.375-387
    • /
    • 2004
  • This paper presents a transient multicomponent mixture analysis tool developed to analyze the molecular diffusion, natural convection, and chemical reactions related to air ingress phenomena that occur during a primary-pipe rupture of a high temperature gas-cooled reactor (HIGR). The present analysis tool solves the one-dimensional basic equations for continuity, momentum, energy of the gas mixture, and the mass of each gas species. In order to obtain numerically stable and fast computations, the implicit continuous Eulerian scheme is adopted to solve the governing equations in a strongly coupled manner. Two types of benchmark calculations were performed with the data of prerious Japanese inverse U-tube experiments. The analysis program, based on the ICE technique, runs about 36 times faster than the FLUENT6 for the simulation of the two experiments. The calculation results are within a 10% deviation from the experimental data regarding the concentrations of the gas species and the onset times of natural convection.

Application of particle filtering for prognostics with measurement uncertainty in nuclear power plants

  • Kim, Gibeom;Kim, Hyeonmin;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1314-1323
    • /
    • 2018
  • For nuclear power plants (NPPs) to have long lifetimes, ageing is a major issue. Currently, ageing management for NPP systems is based on correlations built from generic experimental data. However, each system has its own characteristics, operational history, and environment. To account for this, it is possible to resort to prognostics that predicts the future state and time to failure (TTF) of the target system by updating the generic correlation with specific information of the target system. In this paper, we present an application of particle filtering for the prediction of degradation in steam generator tubes. With a case study, we also show how the prediction results vary depending on the uncertainty of the measurement data.

Intramural Pregnancy after in vitro Fertilization and Embryo Transfer (체외수정 시술 후 발생한 자궁벽내 임신 1예)

  • Cha, Sun-Hwa;Park, Chong-Taik;Kim, Hae-Suk;Song, Hyun-Jung;Kang, Eun-Hee;Song, Hyun-Jin;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.4
    • /
    • pp.273-277
    • /
    • 2004
  • Intramural pregnancy is an unusual ectopic gestation located within the uterine wall, completely surrounded by myometrium and separate from the uterine cavity, fallopian tube, or round ligament. It is known to be difficult to diagnose, and associated with a high rate of uterine rupture. We report a case of intramural pregnancy in which early diagnosis was made and successful treatment was done by dilatation and curettage. Diagnostic laparoscopy confirmed the absence of uterine rupture during the procedure. Therefore, conservation of fertility can be possible with early diagnosis of intramural pregnancy. To our knowledge, this is the first case report of intramural pregnancy following IVF-ET in Korea.

Creep life Prediction for W.M. of High Cr-Mo Steel using Modified Power-law (고 Cr-Mo강의 수정멱수법칙을 이용한 W.M. 크리프 수명예측)

  • An, Jong-Kyo;Yu, Hyo-Sun;Yang, Sung-Mo;Kang, Hee-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.951-956
    • /
    • 2008
  • The high temperature creep properties of the generating plant's high temperature tube, pipe and header and such are very significant in accordance with long-time exposure to the high temperature and pressure environment. Not only this, but as the welding procedure is compulsory for the cohesion of components, the creep properties regarding the local microstructures of steel weldment are very important. In order to understand the creep properties regarding the local microstructures of steel weldment, the SP-Creep test which is easy to get sample from the field component was conducted. The local microstructure of steel weldment, that is, W.M. and B.M.'s microstructures were observed using the SEM. The rupture time of W.M. was longer as 110 % averagely in a same condition, which is the consequence of the difference of the microstructure. Each lethargy coefficient of B.M. and W.M. is evaluated by the relation among the temperature, load and the rupture time from SP-Creep Test. The life estimation equation can be induced by the transformation of Power-law. B.M. and W.M. for each $550\;^{\circ}C$ and $575\;^{\circ}C$, the very similar to normal temperature of the domestic thermal power generation in working, are estimated.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite (일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구)

  • 백영민;이상관;엄문광
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF