• Title/Summary/Keyword: Tube Plate

Search Result 498, Processing Time 0.023 seconds

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.

A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave (유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법)

  • Kim, Yong-Kwon;Park, Ik-Keun;Park, Sae-Jun;Ahn, Yeon-Shik;Gil, Doo-Song
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

Computation of Compact Heat Exchanger Performance by the Heat Exchangelet Method : Effect of Tube-to-tube Conduction along the Fin (미소열교환기법에 의한 밀집형 열교환기의 성능 계산 : 핀을 통한 튜브간 전도의 영향)

  • 성시경;송태호;최영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.494-501
    • /
    • 2000
  • Effectiveness of a 3-pass plate finned-tube heat exchanger is calculated using heat exchangelet method by changing the shape of fin and the arrangement of tubes. The alternative refrigerant R134a is taken in this study. Conduction between neighboring tubes along the fin is taken into account in addition to convection between the fin and the surrounding air. Governing equations are obtained by using energy balance in a small control volume containing a tube and fins. They are numerically solved following the tube. Effect of tube-to-tube conduction is investigated in single-phase and two-phase flows with various fin shapes and arrangements of tubes. Improvement of effectiveness by fin perforation is studied too. The results shows that perforating fins, increasing the number of tubes, and increasing the distance between neighboring tubes at the same fin area enhance the effectiveness.

  • PDF

Frosting Heat Transfer Characteristics of Evaporators Used for Household Refrigerators According to Fin Configuration (냉장고용 증발기의 핀 형상 변화에 따른 착상 열전달 성능특성)

  • Lee, Moo-Yeon;Lee, Sang-Heon;Jung, Hae-Won;Kim, Yong-Chan;Park, Jae-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1071-1078
    • /
    • 2010
  • The objective of this study is to investigate the heat transfer characteristics of evaporators that have various fin configurations and are used in household refrigerators. The frosting and defrosting characteristics of a spirally coiled circular fin-tube evaporator, a discrete-plate fin-tube evaporator, and a continuous-plate fin-tube evaporator were measured and compared. Under non-frosting conditions, the heat transfer coefficient of the spirally coiled circular fin-tube evaporator was 22.3% and 40.2% higher than the coefficients of the discrete- and continuous-plate fin-tube evaporators, respectively. Under frosting conditions, the heat transfer coefficient of the spirally coiled circular fin-tube evaporator was 27.0% and 46.3% higher than the coefficients of the discrete- and continuous-plate fin-tube evaporators, respectively. In addition, the defrosting water amount of the spirally coiled circular fin-tube evaporator was 3.2% and 9.4% lower than the amounts in the case of the discrete- and continuous-plate fin-tube evaporators, respectively.

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

A Study on the Effective Installation to the Apartment Through Solar Collector Performance Test (태양열 집열기 성능실험을 통한 공동주택 효율적 설치방안 연구)

  • Kim, Mi-Yeon;Choi, Byung-Do;Kim, Hyung-Geun;Park, Jin-Chul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.480-487
    • /
    • 2012
  • The application of solar energy in residential building is general and natural in today. And application methods of solar thermal energy is divided in two kind of form, single evacuated tube and flat-plate form. Then in this study, the efficiency of single evacuated tube and flat-plate system is compared by total and effective area considering the time receiving the solar radiation between 24 hours and the specific time(10:00~15:00). As a result of the experiment, single evacuated tube and flat-plate collector's efficiency is varied by the quantity of solar radiation. And especially, the flat-plate system is more affected by outdoor temperature. Therefore the application of solar thermal system should be considered the solar radiation and outdoor temperature.

  • PDF

Performance of a Shell-and-Tube Heat Exchanger with Spiral Baffle Plates

  • Son, Yeong-Seok;Sin, Ji-Yeong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1555-1562
    • /
    • 2001
  • In a conventional shell-and-tube heat exchanger, fluid contacts with tubes flowing up and down in a shell, therefore there is a defect in the heat transfer with tubes due to the stagnation portions . Fins are attached to the tubes in order to increase heat transfer efficiency, but there exists a limit. Therefore, it is necessary to improve heat exchanger performance by changing the fluid flow in the shell. In this study, a highly efficient shell-and-tube heat exchanger with spiral baffle plates is simulated three-dimensionally using a commercial thermal-fluid analysis code, CFX4.2. In this type of heat exchanger, fluid contacts with tubes flowing rotationally in the shell. It could improve heat exchanger performance considerably because stagnation portions in the shell could be removed. It is proved that the shell-and-tube heat exchanger with spiral baffle plates is superior to the conventional heat exchanger in terms of heat transfer.

  • PDF

A Study of Performance of Roll-plate type fin-tube Heat Exchanger for the Refrigerator (냉장고용 롤-플레이트형 휜-관 열교환기의 성능에 관한 연구)

  • Ahn, Sung-Jun;Kim, Jong-Su;Kwon, Oh-Boong;Park, Yong-Jong;Ha, Young-Ju;Choi, Sang-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2292-2297
    • /
    • 2008
  • Recently, a study on condensers for refrigerators has focused on new model which will cost less and will be more efficient. Some widely used condensers for domestic refrigerators are wire-and-tube type condenser, hot-wall type condenser, and spiral type condenser. Some companies which use the spiral type condenser at the moment try to develop a new type condenser which will cost less and will be as efficient as the spiral type. The new type condenser consists of a steel tube, steel plates and louver fins attached to the tube. The tube and the plate are bent into a single-passage serpentine shape.

  • PDF

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

The Analytic Analysis of Suppressing Jet Flow at Guide Tube of Circular Irradiation Hole in HANARO (하나로 원형 조사공의 안내관 제트유동 억제에 대한 해석)

  • Park Y. C.;Wu S. I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.214-219
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth, open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. The HANARO is composed of inlet plenum, grid plate, core channel with flow tubes and chimney. The reactor core channel is located at about twelve m (12 m) depth of the reactor pool and cold by the upward flow that the coolant enters the lower inlet of the plenum, rises up through the grid plate and the core channel and exit through the outlet of chimney. A guide tube is extended from the reactor core to the top of the reactor chimney for easily un/loading a target under the reactor normal operation. But active coolant through the core can be Quickly raised up to the top of the chimney through the guide tube by jet flow. This paper is described an analytical analysis to study the flow behavior through the guide tube under reactor normal operation and unloading the target. As results, it was conformed through the analysis results that the flow rate, about fourteen kilogram per second (14 kg/s) suppressed the guide tube jet and met the design cooling flow rate in a circular flow tube, and that the fission moly target cooling flow rate met the minimum flow rate to cool the target.

  • PDF