• 제목/요약/키워드: Tube Failure

검색결과 499건 처리시간 0.021초

Seismic experiment and analysis of rectangular bottom strengthened steel-concrete composite columns

  • Hui, Cun;Zhu, Yanzhi;Cao, Wanlin;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.599-621
    • /
    • 2016
  • In order to study the working mechanism of rectangular steel-concrete composite columns subjected to compression-bending load and further determine the seismic performance index, a bottom strengthened rectangular steel reinforced concrete (SRC) column with concealed steel plates and a bottom strengthened rectangular concrete filled steel tube (CFST) columns were proposed. Six column models with different configurations were tested under horizontal low cyclic loading. Based on the experiments, the load-bearing capacity, stiffness and degradation process, ductility, hysteretic energy dissipation capacity, and failure characteristics of the models were analyzed. The load-bearing capacity calculation formulas for a normal section and an oblique section of bottom strengthened rectangular steel-concrete composite columns were pesented and a finite element (FE) numerical simulation of the classical specimens was performed. The study shows that the load-bearing capacity, ductility, and seismic energy dissipation capacity of the bottom strengthened rectangular steel-concrete composite columns are significantly improved compared to the conventional rectangular steel-concrete composite columns and the results obtained from the calculation and the FE numerical simulation are in good agreement with those from the experiments. The rectangular steel-concrete composite column with bottom strengthened shows better seismic behavior and higher energy dissipation capacity under suitable constructional requirements and it can be applied to the structure design of high-rise buildings.

기관절개술 후 발생한 기관무명동맥루 1예 (A Case of Tracheo-Innominate Artery Fistula after Tracheostomy)

  • 이재훈;홍석민;김용복;박일석
    • 대한기관식도과학회지
    • /
    • 제18권2호
    • /
    • pp.56-59
    • /
    • 2012
  • Tracheo-innominate artery fistula (TIF) is a rare but catastrophic and almost always fatal complication of tracheostomy. TIF can occur anytime but is commonly present 3 to 24 days after tracheostomy. It can first manifest as massive bleeding around and through the tracheostomy tube, but it can also manifest as a small amount of blood with temporary spontaneous resolution. If TIF is suspicious, airway management and prompt surgical intervention are needed. In an 83-year-old man with CVA history 20 years earlier and who had recurrent aspiration pneumonia, tracheostomy was performed for respiratory management and ventilator support. On day 7 post-tracheostomy, the patient had bleeding from the tracheostoma. Immediate surgical exploration was performed to control the bleeding. A defect was seen at the post wall of the innominate artery. The erosive portion of the artery was sutured, but the patient died three weeks after the surgery due to rebleeding and respiratory failure. We present a patient who developed TIF after tracheostomy, with literature review.

  • PDF

체외 순환 보조 장치 위한 공기방울 감지 장치 개발 (Development of Bubble Detector for Extracorporeal Circulation Support System)

  • 이혁수
    • 융합신호처리학회논문지
    • /
    • 제11권4호
    • /
    • pp.298-302
    • /
    • 2010
  • 체외 순환 보조 장치는 호흡부전 및 심부전 등에 사용하는 장치이며 세계적으로 많은 연구 개발과 임상에의 사용이 계속되고 있다. 이 장치들을 사용할 때 주의해야할 사항중 하나는 공기 색전증이다. 공기 색전증은 정맥혈내로 공기가 들어갈 수 있는 여러 가지 수술 과정 및 진단 과정의 합병증으로 일어날 수 있으며, 수술부위가 심장보다 위치, 수술 과정 중 체강, 체외 순환 보조 장치를 사용할 때 공기의 유입이 생길 수 있다. 이러한 문제를 해결하기위해 비유전율 상수의 변화를 이용한 공기방울 감지 장치를 개발했다. 모의순환 장치에서 실험해본 결과 튜브 안의 공기 양에 따라 신호의 차를 분명하게 보여주어 공기방울을 감지할 수 있었다.

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • 제5권3호
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Analysis of behaviour for hollow/solid concrete-filled CHS steel beams

  • Kvedaras, Audronis Kazimieras;Sauciuvenas, Gintas;Komka, Arunas;Jarmolajeva, Ela
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.293-308
    • /
    • 2015
  • Interaction between the external thin-walled steel tube and the internal concrete core significantly increases the bending resistance of composite beams and beam-columns in comparison with the steel or concrete members. There is presented a developed method for design of hollow and solid concrete-filled steel tubular beams based on test data, which gives better agreement with test results than EC4 because its limitation to take an increase in strength of concrete caused by confinement contradicts the recommendation of 6.7.2(4) that full composite action up to failure may be assumed between steel and concrete components of the member. Good agreement between the results of carried out experimental, numerical and theoretical investigations allows recommending the proposed method to use in design practice.

후천성 기관확장증 (Acquired Tracheal Dilatation)

  • 최종욱;김용환;김혜정;이승훈;최건
    • 대한기관식도과학회지
    • /
    • 제3권1호
    • /
    • pp.185-187
    • /
    • 1997
  • Acquired tracheal dilatation is a state of abnormal tracheal dilatation developing from various causes. Tracheomalacia and tracheal dilatation can develop in respiratory distress patients with prolonged endotracheal intubation with assisted positive-pressure ventilation due to positive airway pressure and high cuff pressure. The authors have recently experienced one case of respiratory failure, cardiac arrest, and whole body emphysema after tracheostomy and portex tube insertion were performed to patient with the endotracheal intubation with assisted positive-pressure ventilation for two weeks in the septic shock resulted from colon perforation, who developed tracheal dilatation. We summarize diagnostic and therapeutic strategies of acquired tracheal dilatation for the prevention of emergency status and the management for that patients.

  • PDF

A Systematic Approach for Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Transportation Pinch Force

  • Lee, Seong-Ki;Park, Joon-Kyoo;Kim, Jae-Hoon
    • 방사성폐기물학회지
    • /
    • 제19권3호
    • /
    • pp.307-322
    • /
    • 2021
  • This study developed an analytical methodology for the mechanical integrity of spent nuclear fuel (SNF) cladding tubes under external pinch loads during transportation, with reference to the failure mode specified in the relevant guidelines. Special consideration was given to the degraded characteristics of SNF during dry storage, including oxide and hydride contents and orientations. The developed framework reflected a composite cladding model of elastic and plastic analysis approaches and correlation equations related to the mechanical parameters. The established models were employed for modeling the finite elements by coding their physical behaviors. A mechanical integrity evaluation of 14 × 14 PWR SNF was performed using this system. To ensure that the damage criteria met the applicable legal requirements, stress-strain analysis results were separated into elastic and plastic regions with the concept of strain energy, considering both normal and hypothetical accident conditions. Probabilistic procedures using Monte Carlo simulations and reliability evaluations were included. The evaluation results showed no probability of damage under the normal conditions, whereas there were small but considerably low probabilities under accident conditions. These results indicate that the proposed approach is a reliable predictor of SNF mechanical integrity.

Development of umbrella anchor approach in terms of the requirements of field application

  • Evirgen, Burak;Tuncan, Ahmet;Tuncan, Mustafa
    • Geomechanics and Engineering
    • /
    • 제18권3호
    • /
    • pp.277-289
    • /
    • 2019
  • In this study, an innovative anchoring approach has been developed dealing with all relevant aspects in consideration of previous works. An ultimate pulling force calculation of anchor is presented from a geotechnical point of view. The proposed umbrella anchor focuses not only on the friction resistance capacity, but also on the axial capacity of the composite end structure and the friction capacity occurring around the wedge. Even though the theoretical background is proposed, in-situ application requires high-level mechanical design. Hence, the required parts have been carefully improved and are composed of anchor body, anchor cap, connection brackets, cutter vanes, open-close ring, support elements and grouting system. Besides, stretcher element made of aramid fabric, interior grouting system, guide tube and cable-locking apparatus are the unique parts of this design. The production and placement steps of real sized anchors are explained in detail. Experimental results of 52 pullout tests on the weak dry soils and 12 in-situ tests inside natural soil indicate that the proposed approach is conservative and its peak pullout value is directly limited by a maximum strength of anchored soil layer if other failure possibilities are eliminated. Umbrella anchor is an alternative to conventional anchor applications used in all types of soils. It not only provides time and workmanship benefits, but also a high level of economic gain and safe design.

MDF를 이용한 알루미늄 평판 절개 해석 (Numerical Analysis of MDF for Aluminum Plate Cutting)

  • 이주호
    • 한국추진공학회지
    • /
    • 제22권6호
    • /
    • pp.134-141
    • /
    • 2018
  • 본 연구에서는 MDF(Mild-detonating Fuse)를 이용한 선형분리장치 개발 가능성을 확인하기 위해 기초 연구를 수행하였다. 지름이 작은 금속(납) 튜브 내부에 화약(RDX)이 충전되어 있는 MDF를 활용한 알루미늄 평판 절개 기초 시험을 수행하였다. 평판의 두께와 MDF의 단위 길이당 화약량을 조절해가며 시험을 수행하였으며, 평판 두께와 화약량에 따른 절개 여부를 확인하였다. 시험 결과를 바탕으로 AUTODYN 기반의 수치 해석 모델을 개발하였으며, 정확한 파괴 조건을 결정하였다. 시험 및 해석 결과 분석을 통해 MDF의 알루미늄 평판 절개 메커니즘과 특성을 확인하였으며, 체계 적용 가능성을 확인하였다. 개발된 해석 기법을 활용하면 다양한 MDF 및 구조물에 대한 절개 가능 여부를 미리 확인하여 개발 과정에서의 시험 비용을 최소화 할 수 있다.

Nuclear reactor vessel water level prediction during severe accidents using deep neural networks

  • Koo, Young Do;An, Ye Ji;Kim, Chang-Hwoi;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.723-730
    • /
    • 2019
  • Acquiring instrumentation signals generated from nuclear power plants (NPPs) is essential to maintain nuclear reactor integrity or to mitigate an abnormal state under normal operating conditions or severe accident circumstances. However, various safety-critical instrumentation signals from NPPs cannot be accurately measured on account of instrument degradation or failure under severe accident circumstances. Reactor vessel (RV) water level, which is an accident monitoring variable directly related to reactor cooling and prevention of core exposure, was predicted by applying a few signals to deep neural networks (DNNs) during severe accidents in NPPs. Signal data were obtained by simulating the postulated loss-of-coolant accidents at hot- and cold-legs, and steam generator tube rupture using modular accident analysis program code as actual NPP accidents rarely happen. To optimize the DNN model for RV water level prediction, a genetic algorithm was used to select the numbers of hidden layers and nodes. The proposed DNN model had a small root mean square error for RV water level prediction, and performed better than the cascaded fuzzy neural network model of the previous study. Consequently, the DNN model is considered to perform well enough to provide supporting information on the RV water level to operators.