• 제목/요약/키워드: Tube Drawing

검색결과 65건 처리시간 0.036초

일방향 탄소나노섬유 강화 Cu 기지 나노복합재료용 중간재 제조에 관한 연구 (The study on the manufacturing intermediary materials for the carbon nanofiber reinforced Cu matrix noncomposite)

  • 백영민;이상관;엄문광
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.46-49
    • /
    • 2003
  • Cu have been widely used as signal transmission materials for electrical electronic components owing to its high electrical conductivity. However, it's size have been limited to small ones due to its poor mechanical properties, Until now, strengthening of the copper at toy was obtained either by the solid solution and precipitation hardening by adding alloy elements or the work hardening by deformation process. Adding the at toy elements lead to reduction of electrical conductivity. In this aspect, if carbon nanofiber is used as reinforcement which have outstanding mechanical strength and electric conductivity, it is possible to develope Cu matrix nanocomposite having almost no loss of electric conductivity. It is expected to be innovative in electric conduct ing material market. The unidirectional alignment of carbon nanofiber is the most challenging task developing the copper matrix composites of high strength and electric conductivity In this study, the unidirectional alignment of carbon nanofibers which is used reinforced material are controlled by drawing process in order to manufacture the intermediary materials for the carbon nanofiber reinforced Cu matrix nanocomposite and align mechanism as well as optimized drawing process parameters are verified via experiments and numerical analysis. The materials used in this study were pure copper and the nanofibers of 150nm in diameter and of $10~20\mu\textrm{m}$ In length. The materials have been tested and the tensile strength was 75MPa with the elongation of 44% for the copper it is assumed that carbon nanofiber behave like porous elasto-plastic materials. Compaction test was conducted to obtain constitutive properties of carbon nanofiber. Optimal parameter for drawing process was obtained by experiments and numerical analysis considering the various drawing angles, reduction areas, friction coefficient, etc Lower reduction areas provides the less rupture of cu tube is not iced during the drawing process. Optimal die angle was between 5 degree and 12 degree. Relative density of carbon nanofiber embedded in the copper tube is higher as drawing diameter decrease and compressive residual stress is occurred in the copper tube. Carbon nanofibers are moved to the reverse drawing direct ion via shear force caused by deformation of the copper tube and alined to the drawing direction.

  • PDF

광섬유 생산용 유리섬유 인출공정에 대한 복사 열전달 해석 (RADIATIVE HEAT TRANSFER ANALYSIS OF GLASS FIBER DRAWING IN OPTICAL FIBER MANUFACTURING)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2011
  • In this study, the glass fiber drawing from a silica preform in the furnace for the optical fiber manufacturing process is numerically simulated by considering the radiative heating of cylindrically shaped preform. The one-dimensional governing equations of the mass, momentum, and energy conservation for the heated and softened preform are solved as a set of the boundary value problems along with the radiative transfer approximation between the muffle tube and the deformed preform shape, while the furnace heating is modeled by prescribing the temperature distribution of muffle tube. The temperature-dependent viscosity of silica plays an important role in formation of preform neck-down profile when the glass fiber is drawn at high speed. The calculated neck-down profile of preform and the draw tension are found to be reasonable and comparable to the actual results observed in the optical fiber industry. This paper also presents the effects of key operating parameters such as the muffle tube temperature distribution and the fiber drawing speed on the preform neck-down profile and the draw tension. Draw tension varies drastically even with the small change of furnace heating conditions such as maximum heating temperature and heating width, and the fine adjustment of furnace heating is required in order to maintain the appropriate draw tension of 100~200 g.

가변직경을 갖는 자동차용 카울크로스바의 복합인발공정 개발 (Development of Combined Drawing Process for Automotive Cowl Cross Bar with Variable Diameters)

  • 김홍석;윤재웅
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.236-239
    • /
    • 2009
  • Cowl cross bar, a component of automotive cockpit module, has been manufactured by using welding processes of several tube parts with different diameters. However, in order to reduce costs and increase the quality, it is required to develop a new production method to manufacture the cowl cross bar as one-piece In this study, therefore, eliminating the welding process, tube drawing process which is one of metal forming processes was designed by using combined drawing technique. In addition, the selectable range of area reduction ratio was defined as a design guideline and the designed process sequence was verified by finite element analysis.

  • PDF

유한요소법에 의한 Bi2223 고온 초전도 선재의 다심 인발에 대한 연구 (Study for multi-filament drawing of Bi2223 high-temperature superconductivity wire by FE method)

  • 박동인;김병민;오상수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.273-276
    • /
    • 2003
  • High-temperature superconduction materials(Bi2223) possess electrical/electronic and magnetic properties. Because high-temperature superconduction materials is a ceramic powder, that can not be produced singlehandedly. So Ag sheathed Bi-2223 wire was produced by drawing process using powder-in-tube(PIT) method. This superconductor has many difficulties to produce. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. Bi2223 high-temperature superconductivity have a single filament drawing process, and multi-filament drawing process. This study analysed multi-filament drawing process by FEM, a defects during multi-filament drawing was studied by FEM.

  • PDF

유한요소법에 의한 Bi2223 고온 초전도 선재의 다심 인발에 대한 연구 (A Study on Multi-Filament Drawing of Bi2223 High-Temperature Superconductivity Wire by FE Method)

  • 박동인;김병민;오상수
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.78-83
    • /
    • 2004
  • High-temperature superconduction materials(Bi2223) possess electrical/electronic and magnetic properties. Because high-temperature superconduction materials is a ceramic powder, that cannot be produced singlehandedly. So Ag sheathed Bi-2223 wire was produced by drawing process using powder-in-tube(PIT) method. This superconductor has many difficulties to produce. The main difficulty is that the mechanical properties of the ceramic powder are very different from those of the Ag sheath. And by these properties, Bi2223 high-temperature superconductor, which has a single filament drawing process and multi-filament drawing process, has a defect like sausaging and bursting at a center. This study analyzed multi-filament drawing process by FEM, and a defect generated during multi-filament drawing was studied by FEH. Specially, in order to prevent a bursting at a center, this study presented a method that inserts a pure Ag at a center of multi-filament wire

Bi-2223/Ag 고온 초전도 선재의 임계전류 및 소세징에 미치는 인발 조건의 영향 (The Influence of Drawing Parameters on Sausaging and Critical Current of Bi-2223/Ag HTS Wires.)

  • 하홍수;오상수;하동우;김상철;권영길;류강식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.488-491
    • /
    • 2000
  • Bi-2223/Ag superconducting wires have been mainly prepared by a powder-in-tube method. The drawing and the rolling are main processes to increase the core density and wire length. In the fabrication of long wire, especially, the drawing should be precisely controlled to assure the filament homogeneity. In this paper, the influences of drawing die angle, bearing length and reduction ratio on the sausaging and the critical current density of the wire are investigated. Single cored and multi-filamentary wires are fabricated by PIT method with different conditions. The core densities and sausaging in the wires are investigated and are discussed regarding their relationship to the I$_{c}$. It was made clear that the geometry of drawing die is sensitively dependent on the sausaging. The improvement of I$_{c}$ was achieved by reducing the die angle and high core density.ity.

  • PDF

Tube Hydroforming을 이한 굽힘 공정해석 (Tube Bending Analysis for Hydroforming Process)

  • 양재봉;전병희;오수익
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.249-256
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its seberal advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. Tube hydroforming process is divided into prebending process and hydroforming process. Tube bending ins an important factor of the hydroforming process to enable the tube to be placed in the die cavity. This paper presents the theoretical analysis and the simulation results of the tube bending process. With some assumptions, approximate equations are derived to predict the thickness distribution on the cross section and the spring back of the bent tube. Bending simulations are carried out and compared to the analytical and experimental results.

  • PDF

인발률에 따른 자동차 냉각 배관용 Al 합금의 부식 특성에 관한 연구 (Effect of Drawing Rate on the Corrosion Behavior of Al Alloy Tubes for Automotive Cooling System)

  • 박병준;김정구;안승호;곽동호;손현수
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.489-494
    • /
    • 2008
  • The effect of drawing rate on the electrochemical properties of 3003 Al alloys in 5 wt.% NaCl solution was investigated by electrochemical techniques (potentiodynamic polarization test, potentiostatic polarization test, electrochemical impedance spectroscopy (EIS)) and surface analyses (OM, SEM, EDS). Four kinds of automotive pipe materials were prepared (raw material, drawing rate = 5, 10, 15%). As the drawing rate of Al alloy tube increased, the pitting corrosion resistance increased due to the enrichment of Al oxides on the surface.

Genetic Algorithm과 Neural Network을 이용한 Tube Hydroforming의 성형공정 최적화에 대한 연구 (A Study on Optimal Process Design of Hydroforming Process with n Genetic Algorithm and Neural Network)

  • 양재봉;전병희;오수익
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.644-652
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its several advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. h successful tube hydroforming depends on the reasonable combination of the internal pressure and axial load at the tube ends. This paper deals with the optimal process design of hydroforming process using the genetic algorithm and neural network. An optimization technique is used in order to minimize the tube thickness variation by determining the optimal loading path in the tube expansion forming and the tube T-shape forming process.

  • PDF