• Title/Summary/Keyword: Tsinghua University

Search Result 450, Processing Time 0.025 seconds

A Comparative Study on Tenant Firms in Beijing Tsinghua University Science Park and Shenzhen Research Institute of Tsinghua University

  • Mao, Haiyu;Motohashi, Kazuyuki
    • Asian Journal of Innovation and Policy
    • /
    • v.5 no.3
    • /
    • pp.225-250
    • /
    • 2016
  • This paper aims to explore the institutional difference between Tsinghua University Science Park (TusPark) in Beijing, and business incubator of Research Institute of Tsinghua University in Shenzhen (RITS), and to examine how the difference leads to different new product performance for tenants. In doing so, we use survey methodology to investigate the innovation sources, university linkages, and innovation outputs of tenants in TusPark and RITS. We found that tenants in RITS reply more on "market-driven" knowledge sources for innovation: including knowledge from customers, suppliers, and competitors. The empirical findings suggest that the technology support provided by RITS and the high dependency on "market-driven" knowledge sources jointly contribute to the better new product performance for tenants in RITS.

Morphology Changes of E. coli in Ag-HAp Observed by TEM

  • Kim, T.N.;Feng, Q.L.;Kim, Y.J.;Yim, H.J.;Lim, D.Y.;Hwang, D.S.;Kim, J.W.;Cui, F.Z.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.44-49
    • /
    • 1998
  • The antimicrobial effects of HAp and Ag-HAp was observed using periprosthetic infection bacteria such as Pseudomonas Aeruginosa, Staphylococcus Epidermidis, Escherichia coli (DH5$\alpha$). Ag-HAp showed good antimicrobial effects. TEM study of E. coli with and without Ag treatment in HAp was experimented in order to find the mechanism of Ag in antimicrobial effects. It was observed that the shape of Ag-treated E. coli was changed, the cells walls became inhomogeneous. The vaculoes at cytoplasm formed into E. coli and finally it was discovered by EDAX that there were many dark granules which contain the Ag element inside the cells.

  • PDF

Development of Research into Autophagic Lysosome Reformation

  • Chen, Yang;Yu, Li
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.45-49
    • /
    • 2018
  • Autophagy is a lysosome-dependent degradation process that is essential for maintaining cellular homeostasis. In recent years, more studies have focused on the late stages of autophagy. Our group discovered and studied the terminal step of autophagy, namely autophagic lysosome reformation (ALR). ALR is the process that regenerates functional lysosomes from autolysosomes, thus maintaining lysosome homeostasis. ALR involves clathrin-mediated membrane budding from autolysosomes, elongation of membrane tubules along microtubules with the pulling force provided by the motor protein KIF5B, proto-lysosome scission by dynamin 2, and finally maturation of proto-lysosomes to functional lysosomes. In this review, we will summarize progress in unveiling the molecular mechanisms underlying ALR and its potential pathophysiological roles.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Cloning and Expression Analysis of Gonadogenesis-associated Gene SPATA4 from Rainbow Trout (Oncorhynchus mykiss)

  • Liu, Bowen;Liu, Shangfeng;He, Shan;Zhao, Ying;Hu, Hongxia;Wang, Zhao
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.206-210
    • /
    • 2005
  • Gonadogenesis is a complicated process which involves multi-gene interactions. A rainbow trout (Oncorhynchus mykiss) gene spermatogenesis associated 4 (SPATA4) was cloned and characterized from adult rainbow trout testis. The cDNA sequence of rainbow trout SPATA4 contains an open reading frame of 1, 081 nucleatides encoding a putative protein of 259 amino acids. The putative protein from rainbow trout shares a 76.8% homology with zebrafish SPATA4. No trans-membrane regions or signal peptide were detected using bioinformatics methods. Subcellular localization analysis revealed that rainbow trout SPATA4 was a nuclear protein with highest possibility (39.1%). Multi-tissue reverse transcriptase PCR (RT-PCR) was performed to examine the distribution of rainbow trout SPATA4 in eleven organs of adult rainbow trout. The result demonstrated that this gene express specifically in testis and slight amount of expression was detected in ovary. Further analysis of SPATA4 characterization and function in rainbow trout may provide insight into the understanding of gonadogenesis process.

ANNs on Co-occurrence Matrices for Mobile Malware Detection

  • Xiao, Xi;Wang, Zhenlong;Li, Qi;Li, Qing;Jiang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2736-2754
    • /
    • 2015
  • Android dominates the mobile operating system market, which stimulates the rapid spread of mobile malware. It is quite challenging to detect mobile malware. System call sequence analysis is widely used to identify malware. However, the malware detection accuracy of existing approaches is not satisfactory since they do not consider correlation of system calls in the sequence. In this paper, we propose a new scheme called Artificial Neural Networks (ANNs) on Co-occurrence Matrices Droid (ANNCMDroid), using co-occurrence matrices to mine correlation of system calls. Our key observation is that correlation of system calls is significantly different between malware and benign software, which can be accurately expressed by co-occurrence matrices, and ANNs can effectively identify anomaly in the co-occurrence matrices. Thus at first we calculate co-occurrence matrices from the system call sequences and then convert them into vectors. Finally, these vectors are fed into ANN to detect malware. We demonstrate the effectiveness of ANNCMDroid by real experiments. Experimental results show that only 4 applications among 594 evaluated benign applications are falsely detected as malware, and only 18 applications among 614 evaluated malicious applications are not detected. As a result, ANNCMDroid achieved an F-Score of 0.981878, which is much higher than other methods.