• 제목/요약/키워드: Tryptophan synthase

검색결과 35건 처리시간 0.021초

Biosynthesis of Two Hydroxybenzoic Acid-Amine Conjugates in Engineered Escherichia coli

  • Kim, Song-Yi;Kim, Han;Kim, Bong-Gyu;Ahn, Joong-Hoonc
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1636-1643
    • /
    • 2019
  • Two hydroxybenzoyl amines, 4-hydroxybenzoyl tyramine (4-HBT) and N-2-hydroxybenzoyl tryptamine (2-HBT), were synthesized using Escherichia coli. While 4-HBT was reported to demonstrate anti-atherosclerotic activity, 2-HBT showed anticonvulsant and antinociceptive activities. We introduced genes chorismate pyruvate-lyase (ubiC), tyrosine decarboxylase (TyDC), isochorismate synthase (entC), isochorismate pyruvate lyase (pchB), and tryptophan decarboxylase (TDC) for each substrate, 4-hydroxybenzoic acid (4-HBA), tyramine, 2-hydroxybenzoic acid (2-HBA), and tryptamine, respectively, in E. coli. Genes for CoA ligase (hbad) and amide formation (CaSHT and OsHCT) were also introduced to form hydroxybenzoic acid and amine conjugates. In addition, we engineered E. coli to provide increased substrates. These approaches led to the yield of 259.3 mg/l 4-HBT and 227.2 mg/l 2-HBT and could be applied to synthesize diverse bioactive hydroxybenzoyl amine conjugates.

Triazolopyrimidine계 저해제와 보리 Acetolactate Synthase와의 상호작용 (Interaction of Barley Acetolactate Synthase with Triazolopyrimidine Inhibitors)

  • 이재섭;장수익;남궁성건;신정휴;최정도
    • 대한화학회지
    • /
    • 제42권3호
    • /
    • pp.306-314
    • /
    • 1998
  • Acetolactate synthase(ALS)는 박테리아, yeast, 그리고 고등 식물에서 가지를 가진 아미노산 Val, Leu, Ile의 생합성에 공통적으로 관여하는 필수적인 효소이다. 최근에 개발된 sulfonylurea, imidazolinone, triazolopyrimidine, 그리고 pyrimidyl-oxy-benzoate계 제초제들은 구조적으로 상호 유사성이 없음에도 불구하고 모두 ALS를 작용 표적으로 한다. Triazolopyrimidine(TP)계의 새로운 유도체들을 합성하여 보리의 ALS에 대해 저해활성을 측정하였다. 활성을 나타낸 저해제들의 $IC_{50}값은 3.2nM-0.62mM로 몇 개의 유도체는 뛰어난 활성을 보였다. 보리 ALS에 대해 triazolopyrimidine 유도체 TP4의 저해활성은 반응 시간이 증가함에 따라 증가하였고, 혼합형 저해유형을 보여주었다. TP4와 imidazolinone 제초제인 Cadre, 그리고 feedback 저해제인 Leu에 대한 dual inhibition 실험 결과 모두 평행한 kinetic pattern이 얻어져 이들 저해제의 결합 부위가 최소한 부분적으로 중복되는 부분이 있음을 시사했다. ALS의 Tyr의 변형은 TP4에 의한 저해 효과를 감소시키는 반면 Trp과 Cys 변형은 TP4의 결합에 영향을 나타내지 않았다.

  • PDF

Spectrofluorometric Properties of N-Terminal Domain of Lumazine Protein from Photobacterium leiognathi

  • Kang, Kyoung-Suk;Kim, So-Young;Lee, Jung-Hwan;Nam, Ki-Seok;Lee, Eui Ho;Lee, Chan Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1673-1678
    • /
    • 2013
  • Lumazine protein is a member of the riboflavin synthase superfamily and the intense fluorescence is caused by non-covalently bound to 6,7-dimethyl 8-ribityllumazine. To figure out the binding modes and the structure of the N-terminal domain of lumazine protein, the wild type of protein extending to amino acid 118 (N-LumP 118 Wt) and mutants of N-LumP 118 V41W, S48W, T50W, D64W, and A66W from Photobacterium leiognathi were purified. The biochemical properties of the wild type and mutants of N-LumP 118 proteins were analyzed by absorbance and fluorescence spectroscope. The peak of absorbance and fluorescence of lumazine ligand were shifted to longer wavelength on binding to N-LumPs. The observed absorbance value at 410 nm of lumazine bound to N-LumP 118 proteins indicate that one mole of N-LumP 118 proteins bind to one mole of ligand of lumazine. Fluorescence analysis show that the maximum peak of fluorescence of N-LumP S48W was shifted to the longest wavelength by binding with 6,7-dimethyl 8-ribityllumazine and was shown to the greatest quench effect by acrylamide among all tryptophan mutants.

Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR-1-NKCC1 signaling in dorsal raphe nucleus of rats

  • Yang, Hye Jin;Kim, Mi Jung;Kim, Sung Soo;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권5호
    • /
    • pp.449-457
    • /
    • 2021
  • The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride co-transporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.

종자내 아미노산 합성 조절 유전자에 관한 연구 (Amino Acid Biosynthesis and Gene Regulation in Seed)

  • 임용표;서미정;조수진;이정희;이효연
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1996년도 제10회 식물생명공학심포지움 고등식물 발생생물학의 최근 진보
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF