• Title/Summary/Keyword: Tryptophan hydroxylase

Search Result 30, Processing Time 0.03 seconds

Effects of auricular acupuncture on neuronal activities in the brain of sprague dawley rats (이침(耳鍼)이 절식(絶食)시킨 흰쥐의 뇌신경세포(腦神經細胞) 활성변화(活性變化)에 미치는 영향(影響))

  • Kim, Ee-Hwa;Kim, Youn-Jung;Lim, Baek-Vin;Jang, Mi-Hyun;Chung, Joo-Ho;Kim, Chang-Ju
    • Journal of Acupuncture Research
    • /
    • v.18 no.1
    • /
    • pp.21-28
    • /
    • 2001
  • Objective : The aim of this study was to investigate the effectiveness of stimulation of specific auricular acupuncture points on appetite suppression. Methods : The fasted rats were deprived of food and water for 48 hours. Stimulation of tho inner auricular region of the rat correspond to the human stomach acupuncture point was made for leptin, tryptophan hydroxylase (TPH) and c-fos expression in the brain of the fasted rats by immunohistochemistry. Results : The immunoteactivities of leptin in the periventricular nucleus of the auricular acupunctured group with fasted were significantly higher compared to those of the fasted group. The immunoreactivities of TPH in the median raphe neucleus and reticulotegmental neucleus pons of the auricular acupunctured group with fasted were significantty higher compared to those of the fasted group. And the immunoreactivities of c-fos in the dentate gyrus of the auricular acupunctured group with fasted were significantly lower compared to those from the fasted group. Conclusions : We conclude that the auricular acupuncture altered leptin and TPH-expression in the brain of the fasted rats. The results suggest that auricular acupuncture may inhibit food intake.

  • PDF

Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system

  • Lee, Bombi;Sur, Bongjun;Lee, Hyejung;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.44 no.4
    • /
    • pp.644-654
    • /
    • 2020
  • Background: Posttraumatic stress disorder (PTSD), a mental disorder induced by traumatic stress and often accompanied by depression and/or anxiety, may involve an imbalance in the neurotransmitters associated with the fear response. Korean Red Ginseng (KRG) has long been used as a traditional medicine and is known to be involved in a variety of pharmacological activities. We used the open field test and forced swimming test to examine the effects of KRG on the depression-like response of rats after exposure to single prolonged stress (SPS), leading to activation of the serotonergic system. Methods: Male rats received KRG (30, 50, and 100 mg/kg, intraperitoneal injection) once daily for 14 days after exposure to SPS. Results: Daily KRG administration significantly improved depression-like behaviors in the forced swimming test, increased the number of lines crossed and time spent in the central zone in the open field test, and decreased freezing behavior in contextual and cued fear conditioning. KRG treatment attenuated SPS-induced decreases in serotonin (5-HT) tissue concentrations in the hippocampus and medial prefrontal cortex. The increased 5-HT concentration during KRG treatment may be partially attributable to the 5-hydroxyindoleacetic acid/5-HT ratio in the hippocampus of rats with PTSD. These effects may be caused by the activation of hippocampal genes encoding tryptophan hydroxylase-1 and 2 mRNA levels. Conclusion: Our findings suggest that KRG has an antidepressant effect in rats subjected to SPS and may represent an effective use of traditional medicine for the treatment of PTSD.

Alcohol exposure induces depression-like behavior by decreasing hippocampal neuronal proliferation through inhibition of the BDNF-ERK pathway in gerbils

  • Kim, Ji-Eun;Ji, Eun-Sang;Seo, Jin-Hee;Lee, Moon-Hyoung;Cho, Se-Hyung;KimPak, Young-Mi;Seo, Tae-Beom;Kim, Chang-Ju
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • Depression is one of the most prevalent diseases of alcohol abuse. Brain-derived neurotrophic factor (BDNF) plays a critical role in cell survival in the hippocampus. Phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2) is induced by BDNF, and it regulates cell proliferation and differentiation in the brain. We investigated the effects of alcohol intake on depression-like behavior, cell proliferation, expressions of BDNF and its downstream molecules in the hippocampus using Mongolian gerbils. The gerbils were divided into four groups: control group, 0.5 g/kg alcohol-treated group, 1 g/kg alcohol-treated group, 2 g/kg alcohol-treated group. Each dose of alcohol was orally administered for 3 weeks. The present results demonstrated that alcohol intake induced depression-like behavior. Both 5-hydroxytryptamine synthesis and its synthesizing enzyme tryptophan hydroxylase expression in the dorsal raphe and cell proliferation in the hippocampal dentate gyrus were decreased by alcohol intake. Alcohol intake suppressed BDNF expression, and resulted in the decrease of its downstream molecules, pERK1/2 and Bcl-2, in the hippocampus. We showed that alcohol intake may lead to a depressed-like state with reduced hippocampal cell proliferation through inhibition of the BDNF-ERK signaling pathway.

Effect of Acupuncture on Depression and Cell Proliferation in Hippocampal Gyrus Dentatus of Maternal-separated Rat Pups (침술 치료가 모성분리 새끼 쥐의 우울증과 해마의 치상회 세포증식에 미치는 영향)

  • Park, Jung-Sik;Lim, Hyung-Ho
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.2
    • /
    • pp.91-99
    • /
    • 2019
  • Objectives The loss of maternal care during early postnatal period may increase development of mood-related disorders, such as depression, anxiety, and personality disorders. In this study, the effect of acupuncture on depression in relation with cell proliferation in the hippocampal gyrus dentatus was investigated using maternal-separated rat pups. Methods On the postnatal 14th day, rat pups from six dams were grouped into following groups: maternal care group, maternal separation group, maternal separation and non-acupoint-acupunctured group, maternal separation and Zusanli-acupunctured group, and maternal separation and fluoxetine-treated group. Acupuncture was performed from postnatal 28th day to postnatal 37th day. The rat pups that belong in the maternal separation and fluoxetine-treated group were injected subcutaneously with 5 mg/kg fluoxetine hydrochloride once a day for the same period of time. To evaluate activity of the rat pups, open field test was performed. Immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe and for 5-bromo-2'-deoxyuridine (BrdU) in the hippocampal gyrus dentatus was conducted. Results The present results reveal that the activity was decreased by maternal separation. In contrast, acupuncture at Zusanli overcame maternal separation-induced hypoactivity. Maternal separation suppressed TPH expression and 5-HT synthesis in the dorsal raphe and decreased cell proliferation in the hippocampal gyrus dentatus of rat pups. In contrast, acupuncture at Zusanli alleviated maternal separation-induced decrease of 5-HT synthesisand TPH expression. Conclusions The present results demonstrate that acupuncture at Zusanli ameliorated depressive state through increasing cell proliferation and enhancing 5-HT synthesis.

Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR-1-NKCC1 signaling in dorsal raphe nucleus of rats

  • Yang, Hye Jin;Kim, Mi Jung;Kim, Sung Soo;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.449-457
    • /
    • 2021
  • The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride co-transporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.

Anxiolytic effect of Korean Red Ginseng through upregulation of serotonin and GABA transmission and BDNF expression in immobilized mice

  • Bui, Bich Phuong;Nguyen, Phuong Linh;Do, Ha Thi Thu;Cho, Jungsook
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.819-829
    • /
    • 2022
  • Background: Anxiolytic properties of Korean Red Ginseng (KRG) have been previously reported. However, the exact mechanism(s) of action remains to be elucidated. The present study investigated the effect of KRG on immobilization-induced anxiety-like behaviors in mice and explored the involvement of the serotonin and GABA systems and BDNF in the anxiolytic action. Methods: Mice were orally administered with KRG (200 mg/kg/day) for 4 weeks and immobilized once daily for 2 h. p-Chlorophenylalanine (p-CPA) was intraperitoneally injected on day 22-28, and flumazenil or bicuculline was injected on day 25-28. After behavioral evaluations, brains were dissected for biochemical analyses. Results: KRG improved immobilization-induced anxiety-like behaviors in mice, as assessed by the elevated plus maze (EPM) and marble burying tests (MBT). The anxiolytic effect of KRG was comparable to that of fluoxetine, a reference drug clinically used for anxiety disorders. A serotonin synthesis inhibitor, p-CPA, blocked the effect of KRG in the EPM and MBT, indicating the requirement of serotonin synthesis for anxiolytic action. In addition, the anxiolytic effect of KRG was inhibited by bicuculline (a GABAA antagonist) in MBT, implying the involvement of GABA transmission. Western blotting analyses revealed that KRG upregulated the expression of tryptophan hydroxylase and GABAA receptor in the brain, which was blocked by p-CPA. Enhanced BDNF expression by KRG in the hippocampus was also indicated to mediate the anxiolytic action of KRG in immobilized mice. Conclusion: KRG exhibited the anxiolytic effect in immobilized mice by multiple mechanisms of action, involving enhanced serotonin and GABA transmissions and BDNF expression.

Effects of Genetic and Environmental Factors on the Depression in Early Adulthood (초기 성인기 우울증에 대한 유전적, 환경적 요인의 영향)

  • Kim, Sie-Kyeong;Lee, Sang-Ick;Shin, Chul-Jin;Son, Jung-Woo;Eom, Sang-Yong;Kim, Heon
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.1
    • /
    • pp.14-22
    • /
    • 2008
  • Objectives : The authors purposed to present data for explaining gene-environmental interaction causing depressive disorder by examining the effects of genetic factors related to the serotonin system and environmental factors such as stressful life events in early adulthood. Methods : The subjects were 150 young adults(mean age 25.0${\pm}$0.54), a part of 534 freshmen who had completed the previous study of genotyping of TPH1 gene. We assessed characteristics of life events, depression and anxiety scale and checked if they had a depressive disorder with DSM-IV SCID interview. Along with TPH1 A218C genotype confirmed in previous study, TPH2 -1463G/A and 5HTR2A -1438A/G genes were genotyped using the SNaPshot$^{TM}$ method. Results : In comparison with the group without C allele of TPH1 gene, the number of life events had a significant effect on the probability of depressive disorder in the group with C allele. Other alleles or genotypes did not have a significant effect on the causality of life events and depressive disorder. Conclusion : The results of this study suggest that TPH1 C allele is a significant predictor of onset of depressive disorder following environmental stress. It means that the TPH1 gene may affect the gene-environmental interaction of depressive disorder.

  • PDF

Endotoxin-induced inflammation disturbs melatonin secretion in ewe

  • Herman, Andrzej Przemyslaw;Wojtulewicz, Karolina;Bochenek, Joanna;Krawczynska, Agata;Antushevich, Hanna;Pawlina, Bartosz;Zielinska-Gorska, Marlena;Herman, Anna;Romanowicz, Katarzyna;Tomaszewska-Zaremba, Dorota
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1784-1795
    • /
    • 2017
  • Objective: The study examined the effect of intravenous administration of bacterial endotoxin-lipopolysaccharide (LPS) -on the nocturnal secretion of melatonin and on the expression of enzymes of the melatonin biosynthetic pathway in the pineal gland of ewes, taking into account two different photoperiodic conditions: short-night (SN; n = 12) and long-night (LN; n = 12). Methods: In both experiments, animals (n = 12) were randomly divided into two groups: control (n = 6) and LPS-treated (n = 6) one. Two hours after sunset, animals received an injection of LPS or saline. Blood samples were collected starting one hour after sunset and continuing for 3 hours after the treatment. The ewes were euthanized 3 hours after LPS/saline treatment. The concentration of hormones in plasma was assayed by radioimmunoassay. In the pineal gland, the content of serotonin and its metabolite was determined by HPLC; whereas the expression of examined genes and protein was assayed using real-time polymerase chain reaction and Western Blot, respectively. Results: Endotoxin administration lowered (p<0.05) levels of circulating melatonin in animals from LN photoperiod only during the first hour after treatment, while in ewes from SN photoperiod only in the third hour after the injection. Inflammation more substantially suppressed biosynthesis of melatonin in ewes from SN photoperiod, which were also characterised by lower (p<0.05) cortisol concentrations after LPS treatment compared with animals from LN photoperiod. In the pineal gland of ewes subjected to SN photoperiod, LPS reduced (p<0.05) serotonin content and the expression of melatonin biosynthetic pathway enzymes, such as tryptophan hydroxylase and arylalkylamine-N-acetyltransferase. Pineal activity may be disturbed by circulating LPS and proinflammatory cytokines because the expression of mRNAs encoding their corresponding receptors was determined in this gland. Conclusion: The present study showed that peripheral inflammation reduces the secretion of melatonin, but this effect may be influenced by the photoperiod.

The Analgesic Effects of Apitoxin and its Mechanism via JOR and Measuring Expression of mRNA in Phospholipase and TPH using RT-PCR (Jaw Opening Reflex 및 RT-PCR을 이용한 봉독의 진통효과)

  • Cho, Kwang-Ho;Lee, Jae-Dong;Park, Dong-Suk;Ahn, Byoung-Choul
    • Journal of Pharmacopuncture
    • /
    • v.3 no.1
    • /
    • pp.35-51
    • /
    • 2000
  • The purpose of this study is to prove the analgesic effects of apitoxin and its mechanism via jaw-opening reflex(JOR) and measuring expression of mRNA in Phospholipase and Tryptophan hydroxylase(TPH) using RT-PCR. The experiments were carried out on Sprague-Dawley rats(300-400g) and mastocytoma(P-185 HTR) for JOR and RT-PCR, respectively. Rats anesthetized with thiopental sodium (80mg/kg) were used in the Tooth Pulp stimulation induced JOR. The amplitude of a digastric electromyogram (dEMG) was recorded during the stimulation at an intensity of 1.5 times the threshold for JOR. Apitoxin used in this experiment was diluted with normal saline by 1:1000. Apitoxin was injected intravenously into the test group while normal saline to the control group. However, it was injected directly into the cell of mastocytoma. We referred to base sequence registered in Genbank in designing primers for RT-PCR. The results were as follows; (1)Compared with control group, analgesic effect started to show right after Sprague-Dawely rats were treated with apitoxin($71.50{\pm}8.08$) and lasted for 50 minutes. (2)As a result of the experiment of RT-PCR, we witnessed significant changes in the degree of expression of phospholipase or rate-limiting enzyme of biosynthesis of prostaglandins with $10{\mu}g/ml$ apitoxin.($31.74{\pm}18.98%$, P<0.05) (3)As a result of the experiment of RT-PCR, we witnessed significant changes in the degree of expression of TPH or rate-limiting enzyme in biosynthesis of serotonin with $10{\mu}g/ml$ apitoxin.($131.37{\pm}16.87%$, P<0.05). These results suggest that $10{\mu}g/ml$ apitoxin have the most analgesic effects. This study showed that apitoxin has analgesic effects and held good for 50 minutes. The injection of apitoxin has brought out changes in the degree of expression of phospholipase and TPH. These results strongly suggest that analgesic mechanism by apitoxin is closely related to prostaglandins and serotonin.

Relationships of Cocaine and Amphetamine Regulated Transcript with Serotonin in the Brain

  • Park, S. H.;B. S. Kwon;J. R. Chun;J. W. Jahng;Lee, H. T.;K. S. Chung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.51-51
    • /
    • 2001
  • Cocaine and amphetamine-regulated transcript (CART) is a satiety factor that is regulated by leptin. It was reported that the mice intracerebroventricularly injected with CART showed behavioral changes resembled with the typical behavioral alterations found in the mice carrying disorders in the brain serotonergic (5-HT) system. Hence, this study was conducted to find out the relationships between CART and 5-HT. We first examined the mRNA levels of CART after the injections of para-chlorophenylalanine (pCPA, 300 mg/kg i.p., single injection or daily for three consecutive days) in the rat brains by in situ hybridization using the mouse CART cDNA probe cloned in our laboratory. Systemic administrations of pCPA, a potent inhibitor of tryptophan hydroxylase, the rate limiting enzyme of 5-HT biosynthesis, acutely depletes the brain 5-HT transporter (5-HTT) in the dorsal raphe nucleus (DRN), which reuptakes terminal 5-HT. Results indicated that the mRNA level of CART significantly decreased in the arcuate nucleus, paraventricular nucleus, and lateral hypothalamic nucleus by three days of daily injection with pCPA with no noticeable change detected 24 hrs after the single injection. The message levels of 5-HTT in DRN decreased in both single and three days of injections. Secondly, to investigate whether CART affect to 5-HT, mouse genomic CART gene, which is consist of 3 exons and 2 introns and mouse neurofilament light (NF-L) chain promoter were cloned. Then, we constructed neuron specific expression vector, which was transfected into HeLa cell using lipid-mediated transfection system. Expression of GFP and CART linked to NF-L-chain promoter in the transfected HeLa cell were detected by using fluorescent microscope and RT-PCR. These results confirmed normal expression of DNA constructs in vitro. Then, to increase brain specific expression of CART in vivo transgenic mice carrying CART gene controlled the deleted NF-L-chain promoter were generated by the DNA microinjection into pronuclei of fertilized embryos. Transgenic mice were detected by Southern blot. Further study is necessary to examine CART expression and 5-HTT in these transgenic mice. Therefore, these results suggest that there maybe a positive molecular correlation between CART and 5-HT in responding to the stimuli.

  • PDF