• Title/Summary/Keyword: Tryptophan(Trp)

Search Result 64, Processing Time 0.02 seconds

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • Jin, Yeong Nam;Choe, Yong Hun;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Molecular Approaches for Cloning of Important Higher Plant Genes (고등식물의 유용 유전자 크로닝을 위한 분자적 접근)

  • ;Ala
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An Avabidofsis thaliana gene encoding phosphoribosyl anthranilate transferase is shown to be the gene that is defective in blue fluorescent trp 1 mutant plants. This gene, named PAT1, coding region is homologous to those for the phosphoribosyl anthranilate transferase from many microorganisms. This is due to a defect in tryptophan biosynthesis that leads to an accumulation of anthranilate, a fluorescent intermediate in the tryptophan pathway. PAT1 is a single-copy gene that complements all of the visible phenotypes of the different trp1 mutants. Experiments to determine the regulation of the PAT1 gene are in progress. The wild-type PAT1 promoter and several promoter deletions of PAT1 gene have been transformed into Arabidopsis tryptophan mutants. These constructs might identify promoter elements that control this patterns. We have isolated the homozygous lines in T3 seeds and analysed the protein levels using PAT antibody and PAT protein level increased two fold in pHSl07. Finally, the potential of using PAT1 as a selectable marker or visible reporter of gene expression is being explored.

  • PDF

Repression of Escherichia coli serC-aroA Operon by Aromatic Amino Acids (방향족 아미노산에 의한 대장균 serC-aroA Operon의 발현 억제)

  • Hwang, Woo-Gil;Sa, Jae-Hoon;Kim, Kyung-Hoon;Lim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.109-114
    • /
    • 1994
  • The Escherichia coli aroA and serC genes constitute a mixed-function operon which involves in two different amino acid biosynthetic pathways. The regulation of expression of serC-aroA operon was evaluated through the use of a serC-araA-lacZ fusion plasmid pWH2. The expression of the serC-aroA operon was decreased by aromatic amino acids such as tyrosine, tryptophan, and phenylalanine. The repressible effects were diminished in E. coli tyrR of trpR strain, indicating the involvemnt of TyrR of TrpR protein in the repression. Tyrosine was competitie with cAMP in the influence on the expression of the serC-AroA operon. From these data, it was suggested that the serC-aroA operon is controlled by aromatic amino acids in a negative manner.

  • PDF

Production of L-Tryptophan by Enzymatic Processes (효소공정에 의한 트립토판 생산)

  • 이인영;안경섭;김의환;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.73-78
    • /
    • 1992
  • - Enzymatic synthesis of L-tryptophan(Trp) using E. coli tryptophanase has been investigated. In order to reduce the substrate inhibition by indole and to increase the product yield of L-tryptophan three different approaches have been made in this work. First, indole was intermittently fed to the reaction mixture in order to control the indole concentration at lower level. When 15 mM of indole was used as a total amount of substrate, conversion yield of 80% has been obtained with intermittent feeding while only 20% of indole was converted into L-tryptophan by conventional batch operation, The second method employed in this work was the use of cyclohexane-phosphate buffer organic two-phase system. In this system, indole was mainly partitioned into the organic-solvent phase and therefore substrate inhibition was expected to be reduced. L-Tryptophan production in organic two-phase system was, however, unexpectedly lower than that obtained in aqueous buffer solution. As a third method cyclodextrins have been added to the aqueous reaction mixture. It was found that the addition of $\beta$-cyclodextrin enhanced the tryptophan synthesis noticeably while $\alpha$-cycfodextrin showed little effect on tryptophan production.

  • PDF

Enhancement of Antibacterial Activity of Short Tryptophan-rich Antimicrobial Peptide Pac-525 by Replacing Trp with His(chx)

  • Ahn, Mija;Rajasekaran, Ganesan;Gunasekaran, P.;Ryu, Eun Kyoung;Lee, Ga-Hyang;Hyun, Jae-Kyung;Cheong, Chaejoon;Kim, Nam-Hyung;Shin, Song Yub;Bang, Jeong-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2818-2824
    • /
    • 2014
  • Trp residue is considered as one of the important constituents in antimicrobial peptides (AMPs) as it presence secured good activities in many cases. However, it is preferable to be changed because of their sensitivity towards light. We have synthesized the short Trp-rich AMP Pac-525 and its analogues to investigate the possibility of His(chx) as possible replacement analogue for Trp in AMPs. Based on the assay result of the antibacterial activity including anti-MRSA activity, His(chx) is considered as good candidate for the Trp replacement. Through these study, we found that His(chx) had several merits to design therapeutic antimicrobial agents compare to Trp in terms of i) increasing antibacterial activity without hemolytic activity, ii) successful in designing the short peptide (only four residues), iii) having anti-MRSA activity, iv) overcoming the light sensitivity. Furthermore, transmission electron microscopy (TEM) and dye leakage experiments suggested that P11 and P16 containing His(chx) kill bacteria via forming pore/ion channels on bacterial cell membranes.

Expression of an artificial gene encoding a repeated tripeptide lysyl-g1utamyl-tryptophan in Tobacco Plant (담배식물체에서 필수아미노산인 lysyl-glutamyl-tryptophan을 암호화하는 인공유전자의 발현)

  • Lee, Soo-Young;Ra, Kyung-Soo;Baik, Hyung-Suk;Park, Hee-Sung;Cho, Hoon-Sik;Lee, Young-Se;Choi, Jang-Won
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.96-105
    • /
    • 2002
  • To investigate expression of the artificial gene encoding a repeated tripeptide lysyl-glutamyl-tryptophan in tobacco plant, the plant binary vector, pART404 has been constructed, which contains the duplicated CaMV 35S promoter, an artificial gene coding for repetitive polymer (Lys-Glu-Trp)$_{64}$, and nopaline synthase (nos) terminator. The recombinant expression vector was introduced in Nicotiana tabacum (var. Xanthi) via Agrobacterium tumefaciens-mediated trans-formation. The transgenic calli selected by kanamycin containing medium were then regenerated to whole plants. Southern blot analysis indicated that five transgenic plants (No. 1, 7, 9, 43, 45) showed the hybridizing signals at 1.1 kb of the expected size on EcoRI digestion and each of the transgenic plants contained 1 or 3 copies of the artificial gene inserted into its genome. By northern blot analysis, the size of the hybridized total RNA was estimated to be approximately 1.2 kb and the RNA appeared generally to have the integrity. Western blot indicated that the protein was detected at the position of 33 kDa and the expression level of the polypeptide in the transgenic plant (No. 45) was measured to approximately 0.1% of the total protein.

Separation of Two Amino Acids by Microemulsion Bulk Liquid Membrane

  • Salabat, Alireza;Sanij, Fereshteh Dehghani
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3387-3390
    • /
    • 2012
  • In this research work the potentialities of microemulsion bulk liquid membrane for the selective transport of L-tryptophan (L-Trp) and L-tyrosine (L-Tyr) are investigated at 298.15 K. Reversed micelle formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in dichloroethane, was used as mobile carrier to transport amino acids between a source and a receiving aqueous phase. The effects of pH, surfactant concentration and initial amino acid concentration on the extraction efficiency and transfer rate of the amino acids were studied. It is verified that for a mixture of two amino acids, L-Trp can be extracted selectively by using this type of the bulk liquid membrane with optimized condition.

Plasmid Stability and Cloned-Gene Expression in Continuous Culture of Recombinant Escherichia Coli Under Derepressed Condition

  • Nam, Soo-Wan;Kim, Byung-Kwan;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • Continuous culture was carried out with a recombinant Escherichia coli W3110/pCR185, which encodes trp-operon enzymes when the temperature is shifted from $37^{circ}C\;t;42^{\circ}C$. Under derepressed condition of $42^{\circ}C$. plasmlid stability and gene expression were analysed as function of the dilution rate. The stability of plasmid increased with the dilution rate, but maximal levels of gene expression (tryptophan concentration) and plasmid DNA content were obtained at the lowest dilution rate, $0.075\;hr^{-1}$. The plasmid instability, observed at low dilution rates, could be explained by the unbalanced biosynthetic state of the recombinant cell harboring a high copy number of plasmid.

  • PDF

Structural Analysis of the Streptomyces avermitilis CYP107W1-Oligomycin A Complex and Role of the Tryptophan 178 Residue

  • Han, Songhee;Pham, Tan-Viet;Kim, Joo-Hwan;Lim, Young-Ran;Park, Hyoung-Goo;Cha, Gun-Su;Yun, Chul-Ho;Chun, Young-Jin;Kang, Lin-Woo;Kim, Donghak
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of $2.6{\AA}$. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant's catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.

Stable Maintenance of Recombinant Plasmid Containing trp $^+$ Operon in E. coli Cultures by the phe W$^+$ -pheS$^{t8}$ System (대장균 배양 중 phe W$^+$-pheS-$^{-ts}$ System에 의한 재조합 trp$^+$ 플라스미드의 안정적 유지)

  • 강충민;최장원;이세영
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 1990
  • To improve the stability of recombinant pBR322-trip$^+$ plasmid (pLTW24) in E. coli culture, a positive selection system was devised. A DNA fragment containing pheW$^+$ gene (a structural gene for tRNA$^{phe}$ was isolated and inserted into the pBR322-trip$^+$ plasmid(pLTP24). A temperature sensitive host strain. LC901-pheS$^{-ts}$, was constructed for this plasmid by transducing pheS$^{-ts}$ allele (phenylalanyl-tRNA synthetase) to E. coli LC901 using P1kc bacteriophage. The LC901-pheS$^{-ts}$ cells were unable to grow at a restrictive temperature when they had lost the pBR322 :: pheW$^+$ (pLTP24) plasmid. The effects of pheW$^+$ gene on the plasmid stability and the expression level of trip$^+$ gene in LC901-pheS$^{-ts}$ strain were investigated. The proportion of Trip$^+$ colonies among LC901-pheS$^{-ts}$ strain carrying plasmid pLTP24 was 99%, whereas that of LC901 strain carrying plasmid pLTW24 was 7% at the end of 20 generations. After 100 generations of growth, the strain LC901-pheS$^{-ts}$ carrying plasmid pLTP24 showed little loss of plasmids. While the majority of plasmid pLTW24 in LC901 strain were lost in the same period. The activities of tryptophan synthetase (T. Sase) and anthranilate synthetase (A. Sase) in LC901 strain carrying pLTW24 were about 1.2 times and 1.8 times respectively of those in LC901-pheS$^{-ts}$ strain carrying pLTP24.

  • PDF