• Title/Summary/Keyword: Trypan blue

Search Result 168, Processing Time 0.029 seconds

Inhibitory Effects of the Stem Bark of Albizia julibrissin on Catecholamine Biosynthesis in PC12 Cells

  • Lee, Myung-Koo
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.2
    • /
    • pp.155-158
    • /
    • 1996
  • The methanol extract of Albizzia julibrissin Durazz. (Leguminosae) was successively partitioned into dichloromethane, ethylacetate, butanol (BuOH) and water fractions, and the effects of the each solvent extract on catecholamine biosynthesis in PC12 cells were investigated. Among them, the BuOH fraction $(5{\mu}g/ml\;medium)$ showed 68.8% and 63.6% inhibition on dopamine and norepinephrine content in PC12 cells, respectively. Tyrosine hydroxylase (TH) activity was also reduced markedly by treatment of the BuOH fraction (41.8% inhibition at $5{\mu}g/ml$ in the medium). Each solvent fraction did not show cytotoxicity towards PC12 cells by trypan blue exclusion test. This result suggests that the BuOH fraction has an inhibitory effect on catecholamine biosynthesis by reducing TH activity in PC12 cells.

  • PDF

Synthesis and Cytotoxicity Evaluation of Phosphorylated Derivatives of Ribavirin

  • Rao, Valasani Koteswara;Reddy, Sanapalli Subba;Babu, Kilaru Raveendra;Kumar, Kuntrapakam Hema;Ghosh, Sunil Kumar;Raju, Chamarthi Naga
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.6
    • /
    • pp.952-959
    • /
    • 2011
  • Novel phosphorylated derivatives of ribavirin 5-16 were synthesized by the reaction of 4-nitrophenyl phosphorodichloridate with various amino acid esters in the presence of triethylamine in dry tetrahydrofuran through the intermediates 3. On further reaction of 3 with ribavirin in THF and pyridine in the presence of TEA afforded the title compounds 5-16. Their structures were characterized by IR, $^1H$, $^{13}C$, $^{31}P$ NMR and mass spectral analyses. All the title compounds were found to exhibit potent in vitro anticancer activity against MCF-7 breast cancer cell lines.

The Effects of Polyampholyte on Vitrification Process for cryopreservation of Bovine Oviduct Epithelial Cell (Polyampholyte가 소난관상피세포의 초자화 동결방법에 미치는 영향)

  • Kim, Sung Woo;Lee, Jae-Yeong;Kim, Chan-Lan;Yu, Yeonhee;Lee, Sung Soo;Ko, Yeoung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.527-535
    • /
    • 2020
  • The purpose of this study was to establish a simple vitrification protocols to preserve animal cell lines derived from tissues of livestock that could be recultured. Bovine oviduct epithelial cells (BOEC) were used for the vitrification process using a 0.25 ml straw to increase cryopreservation efficiency. BOEC was cultured from the oviduct of 3.5-day estrus state, and the commercially available polyampholyte StemCell KeepTM was used as a cryoprotective agent. Using different concentrations, the viability rates of BOEC in 5, 10, 25, 50, 75, and 100% in freezing media were investigated. Survivability was determined using a differential staining technique using a trypan blue test and a CYTO-13/PI staining protocol. The viability rates of BOEC in the trypan blue test were 5.6±11.8, 12.5±7.2, 53.0±2.7, 85.1±6.9, 79.8±0.6, and 60.7±6.7% with a respective concentration of StemCell KeepTM. The viability rates in CYTO-13/PI staining were 4.6±2.5, 30.8±12.1, 58.4±2.5, 85.5±1.2, 79.8±0.6, and 71.2±1.2%, respectively. These results indicate that BOEC could be preserved with StemCell KeepTM without toxicity in a 0.25-ml straw. The optimal concentration of vitrification solution with StemCell KeepTM was determined to be 50% and can be considered as a proper preservation method for cryobanking.

Isolation and biochemical characterization of acid tolerance xylanase producing Bacteria, Bacillus sp. GJY from city park soil (도심공원으로부터 산내성 xylanase를 생산하는 박테리아 분리 및 효소학적 특성)

  • Jang, Min-Young;Park, Hwa Rang;Lee, Chong Gyu;Choo, Gab-Chul;Cho, Hyun Seo;Park, Sam-Bong;Oh, Ki-Cheol;Kim, Bong-Gyu
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.1
    • /
    • pp.79-86
    • /
    • 2017
  • Microbes in forest are very important due to not only to enhance soil fertility but also maintain a healthy ecosystem by supplying the energy available to living organisms by producing various kinds of enzymes related to degradation of lignocellulosic biomass. In order to isolate a lignocellulosic biomass degrading bacterial strain from the Jurassic park located in Gyeongnam National University of Science and Technology, We used the Luria-Bertani-Carboxymethyl cellulose (CMC) agar trypan blue method containing 0.4 % carboxymethyl cellulose and 0.01 % trypan blue. As a result, we isolated a bacterial strain showing both activity on the CMC and xylan. To identify the isolated strain, 16S rRNA sequencing and API kit analysis were used. The isolated strain turned out to belong to Bacillus species and then named Bacillus sp. GJY. In the CMC zymogram analysis, it showed that one active band of about 28kDa in size is present. Xylan zymogram analysis also showed to have one active band of about 25kDa in size. The optimal growth temperature of Bacillus sp. GJY was $37^{\circ}C$. The maximal activities of CMCase and xylanase were 12 hour after incubation. The optimal pH and temperature for CMCase were 5.0 and $40^{\circ}C$, respectively, whereas the optimal pH and temperature for xylanase was 4.0 and $40^{\circ}C$. Both activities for CMCase and xylanase showed to be thermally stable at 40and $50^{\circ}C$, while both activities rapidly decreased at over $60^{\circ}C$.

Protective Effect of Green Tea Extract on Amyloid $\beta$ peptide-induced Neurotoxicity (아밀로이드베타 펩타이드 유도성 신경세포독성에 대한 녹차 추출물의 보호 효과)

  • Kim, Young-In;Park, Jeong-Yoon;Choi, Soo-Jung;Kim, Jae-Kyeom;Jeong, Chang-Ho;Choi, Sung-Gil;Lee, Seung-Cheol;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.743-748
    • /
    • 2008
  • Amyloid $\beta$ peptide ($A{\beta}$) is known to increase oxidative stress in nerve cells, leading to apoptosis that is characterized by free radical formation and lipid peroxidation. Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by large deposits of $A{\beta}$ in the brain. In our study, neuronal protective effects of green tea, along with water activity (0.813), and leaf storage periods (fresh leaf, or leaf stored for up to 4 weeks) were investigated. We measured protective effects against $A{\beta}$-induced cytotoxicity in neuron-like PC12 cells. Powdered green tea was extracted with distilled water at $70^{\circ}C$ for 5 min, and this extract was freeze-dried and stored at $-20^{\circ}C$ until use. In cell viability assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the fresh extract, and that obtained after 1 week of leaf storage, showed the best protective effects against $A{\beta}$-induced neurotoxicity. As oxidative stress causes membrane breakdown, the protective effect of green tea extracts was investigated using lactate dehydrogenase (LDH) and trypan blue exclusion assays. LDH release into the medium was inhibited (by 20-25%) in all tests. In addition, all green tea extracts (fresh, or stored before extraction for up to 4 weeks) showed better cell protective effects ($93.3{\pm}1.8-96.2{\pm}2.4$) than did vitamin C ($91.0{\pm}1.6$), used as a positive control. The results suggest that effectiveness of green tea extracts falls with prolonged leaf storage.

Characterization of Cellulase and Xylanase from Bacillus subtilis NC1 Isolated from Environmental Soil and Determination of Its Genes (Bacillus subtilis NC1 유래 cellulase와 xylanase의 특성 규명 및 효소 유전자의 규명)

  • Park, Chang-Su;Kang, Dae-Ook;Choi, Nack-Shick
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.912-919
    • /
    • 2012
  • A Bacillus sp. strain producing celluase and xylanase was isolated from environmental soil with LB agar plate containing carboxymethylcellulose (CM-cellulose) and beechwood xylan stained with trypan blue as substrates, respectively. Based on the 16S rRNA gene sequence and API 50 CHL test, the strain was identified as B. subtilis and named B. subtilis NC1. The cellulase and xylanase from B. subtilis NC1 exhibited the highest activities for CM-cellulose and beechwood xylan as substrate, respectively, and both enzymes showed the maximum activity at pH 5.0 and $50^{\circ}C$. We cloned and sequenced the genes for cellulase and xylanase from genomic DNA of the B. subtilis NC1 by the shot-gun cloning method. The cloned cellulase and xylanase genes consisted of a 1,500 bp open reading frame (ORF) encoding a 499 amino acid protein with a calculated molecular mass of 55,251 Da and a 1,269 bp ORF encoding a 422 amino acid protein with a calculated molecular mass of 47,423 Da, respectively. The deduced amino acid sequences from the genes of cellulase and xylanase showed high identity with glycosyl hydrolases family (GH) 5 and 30, respectively.

Study of Mylabris Phalerata on Anti-cancer Effects in Some Kinds of Cancer Cells (반모가 수종의 인체 암세포에 미치는 영향)

  • Kim, Jin-Sung;Yoon, Sang-Hyub;Ryu, Bong-Ha;Ryu, Ki-Won;Jung, Myung-Chai
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.202-213
    • /
    • 2004
  • Object : Objective: This study was conducted to investigate the anti-cancer effects of Mylabris phalerata (반모) in some kinds of cancer cells. Materials and Methods: Some kinds of cancer cells lines were treated. We used nine kinds of cancer cell lines, such as stomach cancer cells (Kato), lung cancer cells (Calu-1, NCI-H 1395), urinary bladder cancer cells (HS789T), bone cancer cells (Saos-2), brain cancer cells (SK-N-MC), liver cancer cells (Hep-G2), skin cancer cells (Mo-1) and prostate cancer cells (PC-3) with the water decoction of Mylabris phalerata. The histological changes of all cell lines in the media (RPMI-1640) containing the decoction of Mylabris phalerata were observed and we examined cell death assay by trypan blue exclusion testing was examined. Finally, the change of mitochondrial membrane potential was measurd and the inhibitory effect of Mylabris phalerata on cell increase was examined by analyzing the cell cycle. Results: In histologic change all cancer cell lines showed withdrawn and floating appearance that is typical in cellular impairment. Most of the cell lines showed over 50% death rate after 24 hours in trypan blue exclusion tests. Especially the stomach, urinary bladder. brain and liver cell lines showed over 30% death rate after 12 hours. All cell lines treated with Mylabris phalerata were less stained than the control group and the mitochondrial membrane potential in the Mylabris phalerata treated cell lines was markedly lower than that in the control group. The measurement of DNA quantity in all cell lines showed the disappearance of the peak and the thickened left axis, which suggests that all cellular DNA degraded. Conclusion: Mylabris phalerata had cytotoxicity on various kinds of cancer cell lines and the mechanism of that was the impairment of mitochondria by the breakdown of the mitochondrial cell membrane. We propose that this is in part attributable to the destruction of DNA in cancer cells.

  • PDF

Cytotoxicity of Trichoderma spp. Cultural Filtrate Against Human Cervical and Breast Cancer Cell Lines

  • El-Rahman, Atef Abd El-Mohsen Abd;El-Shafei, Sally Mohamed Abd El-Aziz;Ivanova, Elena Vladimirovna;Fattakhova, Alfia Nurlimanovna;Pankova, Anna Victorovna;El-Shafei, Mohamed Abd El-Aziz;El-Morsi, El-Morsi Abu El-Fotouh;Alimova, Farida Kashifovna
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7229-7234
    • /
    • 2014
  • Trichoderma spp. are known as a rich source of secondary metabolites with biological activity belonging to a variety of classes of chemical compounds. These fungi also are well known for their ability to produce a wide range of antibiotic substances and to parasitize other fungi. In search for new substances, which might act as anticancer agents, the overall objective of this study was to investigate the cytotoxic effects of Trichoderma harzianum and Trichoderma asperellum cultural filtrates against human cervical and breast cancer cell lines (HeLa and MCF-7 cells respectively). To achieve this objective, cells were exposed to 20, 40, 60, 80 and 100 mg/ml of both T. harzianum cultural filtrate (ThCF) and T. asperellum cultural filtrate (TaCF) for 24h, then the cell viability and the cytotoxic responses were assessed by using trypan blue and 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assays. Morphological changes in cells were investigated by phase contrast inverted microscopy. The results showed that ThCF and TaCF significantly reduce the cell viability, have cytotoxic effects and alter the cellular morphology of HeLa and MCF-7 cells in a concentration dependent manner. A concentration of 80 and 100mg/ml of ThCF resulted in a sharp decline in the cell viability percent of HeLa and MCF-7 respectively (25.2%, 26.5%) which was recorded by trypan blue assay. The half-maximal inhibitory concentrations ($IC_{50}$) of ThCF and TaCF in HeLa and MCF-7 were recorded as 16.6, 12.0, 19.6 and 0.70mg/ml respectively by MTT assay. These results revealed that ThCF and TaCF have a substantial ability to reduce the viability and proliferation of human cervical and breast cancer cells.

A simple screening method using lignoceullulose biodegradation for selecting effective breeding strains in Agaricus bisporus (리그노셀룰로오스 생물학적 분해를 이용한 간단한 양송이 육종효율 우수 균주 선발)

  • Oh, Youn-Lee;Nam, Youn-Keol;Jang, Kab-Yeul;Kong, Won-Sik;Oh, Min ji;Im, Ji-Hoon
    • Journal of Mushroom
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 2017
  • The white button mushroom, Agaricus bisporus, is commercially the fifth most important edible mushroom, accounting for the production of 9,732 tons of mushrooms in Korea in 2015. The genus Agaricus has been known for its potential to degrade lignocellulosic materials. Chemical analyses carried out during the cultivation of A. bisporus indicated that the cellulose, hemicellulose, and lignin fractions were changed preferentially for both vegetative growth and sexual reproduction. We screened A. bisporus strains for effective biodegradation through extracellular enzyme activity using cellulase, xylanase, and ligninolytic enzymes. The enzyme biodegradations were conducted as follows: mycelia of collected strains were incubated in 0.5% CMC-MMP (malt-mops-peptone), 0.5 Xylan-MMP, and 0.5% lignin-MMP media for 14 days. Incubated mycelia were stained with 0.2% trypan blue. Eighteen strains were divided into 8 groups based on different extracellular enzyme activity in MMP media. These strains were then incubated in sterilized compost and compost media for 20 days to identify correlations between mycelial growth in compost media and extracellular enzyme activity. In this study, the coefficient of determination was the highest between mycelial growth in compost media and ligninolytic enzyme activity. It is suggested that comparison with ligninolytic enzyme activity of the tested strains is a simple method of screening for rapid mycelial growth in compost to select good mother strains for the breeding of A. bisporus.

Effect of Acer tegmentosum M. Extracts on Hepatocarcinoma Cell (산겨릅나무 추출물의 간암세포의 증식억제 효과)

  • Kwon, Ha-Na;Bang, Woo-Suk;Kim, Joo-Young;Park, Jyung-Rewng;Jeon, Jeong-Ryae
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.787-790
    • /
    • 2011
  • The objective of this study was to investigate the anticancer effects of Acer tegmentosum M. extracts. HepG2 hepatocarcinoma cells were treated with ethanol, chloroform, ethylacetate, butanol, aqueous fraction and hot water extract. The antiproliferative effect was evaluated by trypan blue exclusion, MTT-based viability assay and morphology. The trypan blue test showed that anticancer effect of the A. tegmentosum M. extracts on HepG2 cells increased gradually in proportion to the increasing concentration of the fractions. The butanol fraction showed the highest anticancer activity against HepG2 cells (p<0.05). The MTT assay indicated that the growth inhibition by the butanol fraction was dose-dependent. These results suggest that A. tegmentosum M. has the potential to inhibit the growth of hepatocarcinoma cells.