• Title/Summary/Keyword: Truss Structure

Search Result 459, Processing Time 0.028 seconds

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.

An Analysis of Mechanical Features and Variations of Design Composition Elements for Pratt Trusses (프랫트러스의 디자인 구성요소 변화와 역학적 특성분석)

  • Park, Chan-Soo;Lee, Ju-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.2
    • /
    • pp.47-55
    • /
    • 2013
  • The design composition elements and the mechanical behavior of trusses have been investigated for Pratt trusses. As a result, it was determined that the design composition elements of the trusses consist of the composition of webs, the distance between joints, the chords profile, the depth of the truss, and the double chord composition. In addition, by analyzing models with a variation of elements, comprehensive features of structural behavior have been presented for variations of design of Pratt trusses. This is to provide more effective and useful design information on truss structure in the architectural and structural planning stage.

Discrete Sizing Design of Truss Structure Using an Approximate Model and Post-Processing (근사모델과 후처리를 이용한 트러스 구조물의 이산 치수설계)

  • Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.27-37
    • /
    • 2020
  • Structural optimization problems with discrete design variables require more function calculations (or finite element analyses) than those in the continuous design space. In this study, a method to find an optimal solution in the discrete design of the truss structure is presented, reducing the number of function calculations. Because a continuous optimal solution is the Karush-Kuhn-Tucker point that satisfies the optimality condition, it is assumed that the discrete optimal solution is around the continuous optimum. Then, response values such as weight, displacement, and stress are predicted using approximate models-referred to as hybrid metamodels-within specified design ranges. The discrete design method using the hybrid metamodels is used as a post-process of the continuous optimization process. Standard truss design problems of 10-bar, 25-bar, 15-bar, and 52-bar are solved to show the usefulness of this method. The results are compared with those of existing methods.

An Equivalent Truss Model by Discretizing Continuum Structure (연속체의 이산화에 의한 등가트러스모델 개발)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.45-52
    • /
    • 2009
  • Generally, structures are analyzed as continuum. However, sometimes it is more efficient to analyze structure as a discrete model rather than as a continuum model in case of the structure has complex shape or loading condition. This study, therefore, suggests an improved analysis discrete model, named Equivalent Truss Model (further as "ETM"), which can obtain similar results with analyzing continuums analysis. ETM adopts a lattice truss to compose the members of the model, and analyses the structures. As a consequence, the ETM produced the identical outcome with the continuums analysis in section force of different structures and loading conditions. Similar results have been shown in internal stress analysis as well. Make use of that ETM is discrete, fractural path of beam was analyzed by ETM and the result was reasonable.

Application Study of High-Strength Steel(HSA800) for the Special Structure (특수구조 대상으로 고강도 강재(HSA800)의 현장 적용성 연구)

  • Kim, In-Ho;Lee, Hee-Su;Park, Sung-Yong;Kim, Jong-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 2014
  • The purpose of this study is to increase applicability of high strength steel, HSA800 to the structure. Selected study of structure is to consider high strength steel, and following parts, 1) Tensile member with no consider of buckling, 2) Truss existing both tension and compression members with small slenderness ratio. This studied structure is included tension column hang on to the upper bridge truss. The structure element quantity with apply HSA800 instead of SM570 is reduced about 38.9% of tension column and 29.7% of bridge truss. In addition, the number of element's division is reduced about two sections due to reduction of self weight that the crane is able to lift up. This improves to reduce erection sequence and construction period which can save about a month. All connections are reviewed as welding and bolt. Also, the cost of welding is reduced about 41.3% due to apply HSA800. In conclusion, applying HSA800 to the hanging structure aggressively can secure economic and constructability.

A Study on Damage Evaluations of Truss for Large Structure Health Monitoring (대형 구조물 상태평가를 위한 트러스 구조물 손상 평가에 관한 연구)

  • Lee, Jong-Ho;Kim, Seon-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.130-131
    • /
    • 2016
  • This study was performed for application of Structural Health Monitoring system of large structures. In order to evaluate damage of a structure, strain data of truss members that are changing with damage are gained by FEM analysis program. These data are used to train Artificial Neural Network(ANN), and this ANN algorithm can be used to analysis strain data for evaluating damage of the truss members.

  • PDF

A New Way to Manufacture Ultra Light Metal Structures (초경량 금속구조재의 제작을 위한 새로운 방안)

  • Kang, Ki-Ju;Jeon, Gye-Po;Nah, Seong-Jun;Ju, Bo-Seong;Hong, Nam-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.296-303
    • /
    • 2004
  • Recently, the ultra light metal structure with periodic and three dimensional truss elements takes attention because of its multi-functionality and substantial heat resistance. However, the complicated fabrication process leading to high cost has been a major obstacle to wide applications. In this paper, a new idea to construct an ultra light structure with periodic, three dimensional truss using metal wires is presented. To prove the practical validity, a Kagome-like structure was fabricated from stamped wires and punched face sheets. It was assembled by soldering. Through three-point bending and compression tests, the strength was evaluated and compared with the theory.

A statistical reference-free damage identification for real-time monitoring of truss bridges using wavelet-based log likelihood ratios

  • Lee, Soon Gie;Yun, Gun Jin
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.181-207
    • /
    • 2013
  • In this paper, a statistical reference-free real-time damage detection methodology is proposed for detecting joint and member damage of truss bridge structures. For the statistical damage sensitive index (DSI), wavelet packet decomposition (WPD) in conjunction with the log likelihood ratio was suggested. A sensitivity test for selecting a wavelet packet that is most sensitive to damage level was conducted and determination of the level of decomposition was also described. Advantages of the proposed method for applications to real-time health monitoring systems were demonstrated by using the log likelihood ratios instead of likelihood ratios. A laboratory truss bridge structure instrumented with accelerometers and a shaker was used for experimental verification tests of the proposed methodology. The statistical reference-free real-time damage detection algorithm was successfully implemented and verified by detecting three damage types frequently observed in truss bridge structures - such as loss of bolts, loosening of bolts at multiple locations, sectional loss of members - without reference signals from pristine structure. The DSI based on WPD and the log likelihood ratio showed consistent and reliable results under different damage scenarios.

A Study on Construction Sequence Optimization and Structural Analysis in consideration of Structural Concept of Hanging Structure based on the Applied Case (적용사례 중심의 매달린 구조물의 구조적 특성을 고려한 시공순서 최적화 및 시공단계별 구조해석 연구)

  • Park, Yong-Hyeon;Kim, Jong-Soo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.7
    • /
    • pp.147-156
    • /
    • 2019
  • The purpose of this study is to consider structural issues and analyze construction sequences when constructing hanging floors supported by Mega truss. Since suspended structures were supported by the Mega truss, vertical load on suspended structures was needed to transfer from low to high. Deflection management of structures was the primary point under construction. The results of this study were as follows; The steel structures, which has relatively lighter self-weight, were constructed upwards after the base floor steel truss erection. Concrete Placing, which has relatively heavier self-weight, were performed in two phases to minimize structure's deflection. Slab was placed downwards from the top floor to lower floor whereas column was places upwards. Deflection measurements were carried out at every construction sequences.

Optimum Design of Movable Hydraulic Crane Booms (이동식 크레인 붐의 최적설계)

  • Yoo, Kwang-Seon;Park, Jeong-Wan;Sinichi, Hidaka;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.776-781
    • /
    • 2010
  • Optimum design of movable hydraulic crane's booms for weight reduction was performed in this study. Since the boom weight of the present used booms is very heavy, it is needed to make them lighter structure as possible as we can. Optimum design was performed for the booms by changing from the hexagonal cross section to triangular truss structure under the conditions, which are the allowable stress for the present cross section must be maintained, and the optimized weight must be minimized. CATIAV5 was used for stress analysis and design variables were established as the height and width of the triangular truss structure. As the results, it is found that the height of the truss structure is increased in proportion to the height of the booms and the maximum stress for optimal truss structure was obtained as 412MPa, which is lower than the allowable stress for the present hexagonal cross section. The optimized weight of the booms is reduced to about 19.88% comparing to the original weight.