• 제목/요약/키워드: Truss Inner Structures

검색결과 5건 처리시간 0.024초

Flow Truss Dome 구조물의 비대칭 하중모드에 따른 불안정 현상에 관한 연구 (A Study of Unstable Phenomenon of Flow Truss Dome Structure with Asymmetric Load Modes)

  • 손수덕;김승덕;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.61-76
    • /
    • 2002
  • The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.

  • PDF

트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구 (Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core)

  • 정창균;성대용;양동열;김진석;안동규
    • 한국정밀공학회지
    • /
    • 제23권10호
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.