• Title/Summary/Keyword: Truss Core Type Sandwich Plate

Search Result 4, Processing Time 0.02 seconds

A Study on Vibration Power Flow of Truss Core Type Sandwich Plate Structure (트러스코어형 샌드위치 판구조물의 진동파워흐름에 관한 연구)

  • 구경민;김동영;홍도관;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.863-866
    • /
    • 2002
  • In this study, we tried to grasp the characteristic of vibration power flow for the truss core type sandwich plate structure. As the result of the finite element analysis, this paper shows that the vibration power flow characteristic of truss core type sandwich plate structure is understood and the vibration power flow of upper plate according to the mode shape of structure is various. Also it presents the vibration power flow is affected by reinforced structure.

  • PDF

Low Velocity Impact Behavior of Metallic Sandwich Plate with a Truss Core (트러스형 내부구조를 가지는 샌드위치 판재의 저속 충격 특성 연구)

  • Jung, Chang-Gyun;Seong, Dae-Yong;Yang, Dong-Yol;Kim, Jin-Suck;Ahn, Dong-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.80-87
    • /
    • 2006
  • Metallic sandwich plate with a truss core has metallic inner structures which have low relative density between a pair of metal skin sheets or face sheets. In this work, low impact tests have been carried out to examine the behavior of sandwich plates with a pyramidal truss core. For the low velocity impact, the impact apparatus of drop weight type has been fabricated. From the results of the experiments, maximum energy absorption is found to happen when the upper sheet fails. The sandwich plate loses its absorption ability as soon as the inner structures have been crashed completely and optimal core thickness has existed to maximize energy absorption. Comparing the metallic sandwich plate with the monocoque plate, the absorbed energy has been improved up to 160 % and the deflection decreased by up to 76%. As a result, the metallic sandwich plate with a truss core is shown to have good material for impact resistance and energy absorption.

Analytical Study of H-Honeycomb Sandwich Core Structure Model based on Truss (트러스를 기반으로 형성된 H-벌집형 샌드위치 심재 모델의 해석적 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • This paper is a study of the central structural unit model of the sandwich core structure. The applied model is based on the honeycomb structure formed by the truss, the H-shaped honeycomb structure formed by adding the truss of H shape to the space of the center portion, and the honeycomb structure formed by the plate. Applied material property is AISI 304 stainless steel, which has cost effectiveness and easy to get near place. The truss diameter of the model is three different type: 1mm, 2mm and 3mm. ABAQUS software is obtained to do the analysis and applied test is quasi-static loading. Boundary conditions for the analysis are that vertical direction loading at top place without any rotation and bottom surface is fixed. The test results show that the H-truss model has the highest stiffness and yield strength. Therefore, it is hoped that more and more researching for the development of a unit model in sandwich core structure has been investigating and that the developed sandwich core model can be applied into various industrial fields such as mechanical or aerospace industries.

Optimum Design of the Laminated Composite Sandwich Plate Structure of Truss Core considering Vibration Characteristics (복합적층 트러스 코어형 샌드위치 판구조물의 진동특성을 고려한 최적설계)

  • Jung, Suok-Mo;Hong, Do-Kwan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.703-709
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.

  • PDF