• Title/Summary/Keyword: Truncation method

Search Result 192, Processing Time 0.02 seconds

Shock-Fitting in Kinematic Wave Modeling (운동파 이론의 충격파 처리기법)

  • Park, Mun-Hyeong;Choe, Seong-Uk;Heo, Jun-Haeng;Jo, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.185-195
    • /
    • 1999
  • The finite difference method and the method of characteristics are frequently used for the numerical analysis of kinematic wave model. Truncation errors cause the peak discharge dissipated in the solution from the finite difference method. The peak discharge is conserved in the solution from the finite difference method. The peak discharge is conserved in the solution from the method of characteristics, however, the shock may deteriorates the numerical solution. In this paper, distinctive features of each scheme are investigated for the numerical analysis of kinematic wave model, and applicability of shock fitting algorithm such as Propagating Shock Fitting and Approximated Shock Fitting methods are studied. Propagating Shock Fitting method appears to treat shock properly, however, it failed to fit the shock appropriately when applied to a sudden inflow change in a long river. Approximate Shock Sitting method, which uses finer elements, is found to be more proper shock-fitting than the Propagating Shock Fitting method. Comparisons are made between two solution from the kinematic wave theory with shock fitting and full dynamic wave theory, and the results are discussed.

  • PDF

Vibration Analysis of Large Structures by the Component-Mode Synthesis (부분구조진동형 합성방법에 의한 대형구조계의 진동해석)

  • B.H. Kim;T.Y. Chung;K.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.116-126
    • /
    • 1993
  • The finite element method(FEM) has been commonly used for structural dynamic analysis. However, the direct global application of FEM to large complex structures such as ships and offshore structures requires considerable computational efforts, and remarkably more in structural dynamic optimization problems. Adoption of the component-mode synthesis method is an efficient means to overcome the above difficulty. Among three classes of the component-mode synthesis method, the free-interface mode method is recognized to have the advantages of better computational efficiency and easier implementation of substructures' experimental results, but the disadvantage of lower accuracy in analytical results. In this paper, an advanced method to improve the accuracy in the application of the free-interface mode method for the vibration analysis of large complex structures is presented. In order to compensate the truncation effect of the higher modes of substructures in the synthesis process, both residual inertia and stiffness effects are taken into account and a frequency shifting technique is introduced in the formulation of the residual compliance of substructures. The introduction of the frequency shrift ins not only excludes cumbersome manipulation of singular matrices for semi-definite substructural systems but gives more accurate results around the specified shifting frequency. Numerical examples of typical structural models including a ship-like two dimensional finite element model show that the analysis results based on the presented method are well competitive in accuracy with those obtained by the direst global FEM analysis for the frequencies which are lower than the highest one employed in the synthesis with remarkably higher computational efficiency and that the presented method is more efficient and accurate than the fixed-interface mode method.

  • PDF

Comparison of ELLAM and LEZOOMPC for Developing an Efficient Modeling Technique (효율적인 수치 모델링 기법 개발을 위한 ELLAM과 LEZOOMPC의 비교분석)

  • Suk Hee-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • This study summarizes advantages and disadvantages of numerical methods and compares ELLAM and LEZOOMPC to develop an efficient numerical modeling technique on contaminant transport. Eulerian-Lagrangian method and Eulerian method are commonly used numerical techniques. However Eulerian-Lagrangian method does not conserve mass globally and fails to treat boundary in a straightforward manner. Also, Eulerian method has restrictions on the size of Courant number and mesh Peclet number because of time truncation error. ELLAM (Eulerian Lagrangian Localized Adjoint Method) which has been popularly used for past 10 years in numerical modeling, is known for overcoming these numerical problems of Eulerian-Lagrangian method and Eulerian method. However, this study investigates advantages and disadvantages of ELLAM and suggests a change for the better. To figure out the disadvantages of ELLAM, the results of ELLAM, LEZOOMPC (Lagrangian-Eulerian ZOOMing Peak and valley Capturing), and visual MODFLOW are compared for four examples having different mesh Peclet numbers. The result of ELLAM generates numerical oscillation at infinite of mesh Peclet number, but that of LEZOOMPC yields accurate simulations. The simulation results suggest that the numerical error of ELLAM could be alleviated by adopting some schemes in LEZOOMPC. In other words, the numerical model which combines ELLAM with backward particle tracking, forward particle tracking, adaptively local zooming, and peak/valley capturing of LEZOOMPC can be developed for not only overcoming the numerical error of ELLAM, but also keeping the numerical advantage of ELLAM.

Intermediate View Synthesis Method using Kinect Depth Camera (Kinect 깊이 카메라를 이용한 가상시점 영상생성 기술)

  • Lee, Sang-Beom;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.29-35
    • /
    • 2012
  • A depth image-based rendering (DIBR) technique is one of the rendering processes of virtual views with a color image and the corresponding depth map. The most important issue of DIBR is that the virtual view has no information at newly exposed areas, so called dis-occlusion. In this paper, we propose an intermediate view generation algorithm using the Kinect depth camera that utilizes the infrared structured light. After we capture a color image and its corresponding depth map, we pre-process the depth map. The pre-processed depth map is warped to the virtual viewpoint and filtered by median filtering to reduce the truncation error. Then, the color image is back-projected to the virtual viewpoint using the warped depth map. In order to fill out the remaining holes caused by dis-occlusion, we perform a background-based image in-painting operation. Finally, we obtain the synthesized image without any dis-occlusion. From experimental results, we have shown that the proposed algorithm generated very natural images in real-time.

  • PDF

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho;Yoon, Min-Ho;Park, Jung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.987-996
    • /
    • 2018
  • Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

Induction of Apoptosis by Combination Treatment with Luteolin and TRAIL in T24 Human Bladder Cancer Cells (T24 방광암세포에서 Luteolin과 TRAIL의 복합 처리에 따른 Apoptosis 유도)

  • Park, Hyun Soo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.9
    • /
    • pp.1363-1369
    • /
    • 2013
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis by targeting cancer cells. However, some cancer cells are resistant to TRAIL-induced cytotoxicity. One method of overcoming TRAIL resistance is combination treatment with reagents to sensitize cells to TRAIL. Luteolin, a flavonoid, has been shown to have anti-cancer effects by inducing apoptosis and cell cycle arrest in various cancer cell lines in vitro. In this study, we investigated the effects of combination treatment with non-toxic concentration of TRAIL and luteolin in T24 human bladder cancer cells. Combined treatment with luteolin and TRAIL significantly inhibits cell proliferation via activation of caspases by inducing Bid truncation, up-regulation of Bax and down-regulation of X-linked inhibitor of apoptosis protein (XIAP). However, the apoptotic effects of combination treatment with luteolin and TRAIL were significantly inhibited by specific caspases inhibitors. Taken together, these results indicate that combination treatment with TRAIL and luteolin can induce apoptosis in TRAIL-resistant cancer cells through down-regulation of XIAP and modulation of tBid and Bax expression.

Nonlinear interaction behaviour of plane frame-layered soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.711-734
    • /
    • 2012
  • The foundation of a tall building frame resting on settable soil mass undergoes differential settlements which alter the forces in the structural members significantly. For tall buildings it is essential to consider seismic forces in analysis. The building frame, foundation and soil mass are considered to act as single integral compatible structural unit. The stress-strain characteristics of the supporting soil play a vital role in the interaction analysis. The resulting differential settlements of the soil mass are responsible for the redistribution of forces in the superstructure. In the present work, the nonlinear interaction analysis of a two-bay ten-storey plane building frame- layered soil system under seismic loading has been carried out using the coupled finite-infinite elements. The frame has been considered to act in linear elastic manner while the soil mass to act as nonlinear elastic manner. The subsoil in reality exists in layered formation and consists of various soil layers having different properties. Each individual soil layer in reality can be considered to behave in nonlinear manner. The nonlinear layered system as a whole will undergo differential settlements. Thus, it becomes essential to study the structural behaviour of a structure resting on such nonlinear composite layered soil system. The nonlinear constitutive hyperbolic soil model available in the literature is adopted to model the nonlinear behaviour of the soil mass. The structural behaviour of the interaction system is investigated as the shear forces and bending moments in superstructure get significantly altered due to differential settlements of the soil mass.

Performance Characteristics of Hypersonic External Compression Inlet Using Isentropic Compression Surface (등엔트로피 압축면을 이용한 극초음속 외부 압축형 흡입구 성능 특성)

  • Kim, Young Jin;Lee, Hyoung Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.297-308
    • /
    • 2022
  • Most air-breathing aircraft operated in the hypersonic region are equipped with a scramjet engine. In a scramjet engine, a shock wave generated at an inlet acts as a compressor for a general gas turbine engine instead, so total pressure loss caused by the shock wave is considered very important. In this study, to minimize total pressure loss, a method of designing an external compression inlet using isentropic compression surface was proposed, and an external compression inlet with 3-deflection angles and Busemann inlet were designed under the same conditions. After that, through computational analysis, the performance characteristics at off-design conditions were compared. Each inlet shape was truncated according to the length of the 3-ramp external compression inlet, and the boundary layer correction was performed. The isentropic external compression inlet showed superior performance at the design point, but under the off-design conditions, its performance was degraded compared to the 3-ramp external compression inlet.

Improved AR-FGS Coding Scheme for Scalable Video Coding (확장형 비디오 부호화(SVC)의 AR-FGS 기법에 대한 부호화 성능 개선 기법)

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo;Kim, Jae-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1173-1183
    • /
    • 2006
  • In this paper, we propose an efficient method for improving visual quality of AR-FGS (Adaptive Reference FGS) which is adopted as a key scheme for SVC (Scalable Video Coding) or H.264 scalable extension. The standard FGS (Fine Granularity Scalability) adopts AR-FGS that introduces temporal prediction into FGS layer by using a high quality reference signal which is constructed by the weighted average between the base layer reconstructed imageand enhancement reference to improve the coding efficiency in the FGS layer. However, when the enhancement stream is truncated at certain bitstream position in transmission, the rest of the data of the FGS layer will not be available at the FGS decoder. Thus the most noticeable problem of using the enhancement layer in prediction is the degraded visual quality caused by drifting because of the mismatch between the reference frame used by the FGS encoder and that by the decoder. To solve this problem, we exploit the principle of cyclical block coding that is used to encode quantized transform coefficients in a cyclical manner in the FGS layer. Encoding block coefficients in a cyclical manner places 'higher-value' bits earlier in the bitstream. The quantized transform coefficients included in the ealry coding cycle of cyclical block coding have higher probability to be correctly received and decoded than the others included in the later cycle of the cyclical block coding. Therefore, we can minimize visual quality degradation caused by bitstream truncation by adjusting weighting factor to control the contribution of the bitstream produced in each coding cycle of cyclical block coding when constructing the enhancement layer reference frame. It is shown by simulations that the improved AR-FGS scheme outperforms the standard AR-FGS by about 1 dB in maximum in the reconstructed visual quality.

The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm (비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합)

  • Jang, Kyoung-Hoon;Jo, Ho-Sang;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we proposed non-linear gamma curve algorithm for gamma correction. The previous non-linear gamma curve algorithm is generated by the least square polynomial using the Gauss-Jordan inverse matrix. However, the previous algorithm has some weak points. When calculating coefficients using inverse matrix of higher degree, occurred truncation errors. Also, only if input sample points are existed regular interval on 10-bit scale, the least square polynomial is accurately works. To compensate weak-points, we calculated accurate coefficients of polynomial using eigenvalue and orthogonal value of mat11x from singular value decomposition (SVD) and QR decomposition of vandemond matrix. Also, we used input data part segmentation, then we performed polynomial curve fitting and merged curve fitting results. When compared the previous method and proposed method using the mean square error (MSE) and the standard deviation (STD), the proposed segmented polynomial curve fitting is highly accuracy that MSE under the least significant bit (LSB) error range is approximately $10^{-9}$ and STD is about $10^{-5}$.