• Title/Summary/Keyword: Truncated mooring line for model test

Search Result 3, Processing Time 0.015 seconds

Study on Design of Truncated Mooring Line with Static Similarity in Model Test Basins (모형수조에서 정적 상사성을 지닌 절단계류선 모델링에 관한 연구)

  • Kim, Yun-Ho;Kim, Byoung-Wan;Cho, Seok-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.257-265
    • /
    • 2017
  • In this study, a series of numerical simulations was conducted in order to design a truncated mooring line with a static similarity to the prototype. A finite element method based on minimizing the potential energy was utilized to describe the dynamics of mooring lines. The prototype mooring lines considered were installed at a water depth of 1,000 m, whereas the KRISO ocean engineering basin (OEB) in Daejeon has a water depth of 3.2 m, which represents 192 m using a scaling of 1:60. First, an investigation for the design of the truncated mooring line was carried out to match the static characteristics of the KRISO Daejeon OEB environment. Then, the same procedure was performed with the KRISO new deepwater ocean engineering basin (DOEB) that is under construction in Busan. This new facility has a water depth of 15 m, which reflects a real scale depth of 900 m considering the 1:60 scaling factor. A finite element method was used to model the mooring line dynamics. It was found that the targeted truncated mooring line could not be designed under the circumstances of the KRISO OEB with any material properties, whereas several mooring lines were easily matched to the prototype under the circumstances of the KRISO DOEB.

Design of Truncated Mooring Line Model in KRISO's Deepwater Ocean Engineering Basin

  • Jung, Hyun-Woo;Kim, Yun-Ho;Cho, Seok-Kyu;Hwang, Sung-Chul;Sung, Hong-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.227-238
    • /
    • 2015
  • The present work was an attempt to investigate the applicability of truncated mooring systems to KRISO's deep ocean engineering basin (DOEB) with ratios of 1:100, 1:60, and 1:50. The depth of the DOEB is 15 m. Therefore, the corresponding truncated depths for this study were equal to 1500 m, 900 m, and 750 m. The investigation focused on both the static and dynamic characteristics of the mooring system. It was shown, in a static pull-out test, that the restoring force of a FPSO vessel could be modified to a good level of agreement for all three truncation cases. However, when the radius of the mooring site was reduced according to the truncation factor, the surge motion response during a free-decay test showed a significant difference from the full-depth model. However, the reduction of this discrepancy was achieved by increasing the radius up to its maximum possible value while considering the size of the DOEB. Especially, in terms of the time period, the difference was reduced from 24.0 to 5.3 s for a truncation ratio of 1:100, 54.1 to 8.6 s for a truncation ratio of 1:60, and 31.7 to 3.9 s for a truncation ratio of 1:50. As a result, the study verified the applicability of the truncated mooring system to the DOEB, and therefore it could represent the full-depth mooring system relatively well in terms of the static and dynamic conditions.

Numerical Study on Designing Truncated Mooring Lines for FPSO Stability Analysis (FPSO 안정성 평가를 위한 절단계류선 모델링 수치 연구)

  • Kim, Yun-Ho;Cho, Seok-Kyu;Sung, Hong-Gun;Seo, Jang-Hoon;Suh, Yong-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.387-395
    • /
    • 2014
  • In this paper, a numerical analysis for an internal turret moored vessel located at a 400-m water depth is conducted. The target vessel has an internal turret that is located at the 0.2 Lpp position from the fore-side, with $3{\times}4$ complex mooring lines installed around the turret circumference. To investigate the motion response of the vessel and the structural reliability of the lines, model tests were conducted. The KRISO ocean basin has a water depth of 3.2 m, which represents 192m using a scaling of 1:60. In order to precisely represent the real-scale condition, equivalent mooring lines needed to be designed. Truncated mooring lines were designed to supplement the restriction of the flume's water depth and increase the reliability of the model testing. These truncated mooring lines were composed of two different chains in order to match the pre-tension, simultaneously restoring the curve and variation in the effective line tension. The static similarities were compared using a static pull-out test and free decaying test, and the dynamic similarities were matched via a regular wave test and combined environments test. Consequently, the designed truncated mooring system could represent the prototype mooring system relatively well in the aspects of kinematics and dynamics.