• 제목/요약/키워드: Truncated Cone Type

검색결과 8건 처리시간 0.022초

절단 원추형 전기점성 SFD 베어링 연구 (A Study on the Electroviscous(EV) Fluid Squeeze Film Damper(SFD) Bearing of the Truncated Cone Type)

  • 윤석철
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.8-13
    • /
    • 2003
  • Equivalent Reynolds equation of truncated cone type SFD bearing using nonnewtonian EV fluid is derived. The 3 nondimensional oil film pressures and its forces are obtained with axial and circumferential pressure gradient of bearing respectively, and dynamic characteristics for the stability of rotor-bearing system are obtaind through the governing equation for an elastic rotational shaft. It is shown that EV fluid is less sensitive to the changes of oil-film than newtonian fluids for dynamic characteristics. Therefore, results show that it is better to use an EV fluid with truncated cone type SFD bearing for the vibration control of rotational machines.

Design of the Brake Device Using the Axial Crushing of Truncated Cone Type Cylinder

  • Kim, Ji-Chul;Shim, Woo-Jeon
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.387-388
    • /
    • 2002
  • A Brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder, Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape ensures that plastic hinges are formed sequentially from impacting end. This increases the reliability of brake device working. Computational and real experiments were performed to verify the effects of conical angle. Results indicate that undesirable sudden rise of crushing load can be prevented by applying appropriate conical angle.

  • PDF

콘 형상 실린더의 축 방향 압축변형을 이용한 충격흡수장치 설계 (Design of Energy Absorption Device Using the Axial Crushing Behavior of Truncated Cone Type Cylinder)

  • 김지철;이학렬;김일수;심우전;박동화
    • Tribology and Lubricants
    • /
    • 제19권5호
    • /
    • pp.259-267
    • /
    • 2003
  • A brake device for the high-speed impacting object is designed using an axial crushing of thin-walled metal cylinder. Thickness of the cylinder is increased smoothly from the impacting end to the fixed end, resulting in the truncated cone shape. Truncated cone shape minimizes the imperfection-sensitivity of the structure and ensures that plastic hinges are formed sequentially from impacting end. This prevents the undesirable sudden rise in the first peak-crushing load. Several specimens with different conic angles, mean thickness of the wall, and materials were designed and quasi-static compression tests were performed on them. Results indicate that adoption of appropriate conic angle prevents simultaneous wrinkles generation and sudden rise of crushing load and that appropriate conic angle differs in each case, depending on the geometry and material property of the cylinder. Finite element analysis was performed for static compression of the cylinder and its accuracy was checked for the future application.

콘 형상 제동장치의 축방향 압축변형에 대한 실험적 연구 (Experimental Study on the Axial Crushing Behavior of Truncated Cone Type Brake Device)

  • 김지철;이학렬;김일수;심우전
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.169-176
    • /
    • 2002
  • Axial crushing behavior of cylindrical shell Is utilized in the braking of the high-velocity impacting object. In this paper, truncated cone shape brake device is introduced. That is, thickness of the shell is increased gradually from the impacting end to the other end. A detailed experimental investigation on the quasi-static axial crushing behavior of truncated cone type brake devices has been performed. Specimens of various shape were tested to check the influence of design parameters such as length, radius, mean thickness, and conical angle of cylinder. Influence of the material properties were also investigated by adopting aluminum, low carbon steel, and stainless steel as constructing materials. By analyzing deformation procedures of the specimens, it is seen that conical angle influence the deformation mode and the sequence of the wrinkles generation. Braking distance and mean braking force of each specimen were predicted based on the crushing load measured from the tests.

  • PDF

절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구 (A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System)

  • 윤석철
    • 한국안전학회지
    • /
    • 제12권1호
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage

  • Li, Yujie;Luo, Rong;Zhang, Qihua;Xiao, Guoqiang;Zhou, Liming;Zhang, Yuting
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.139-160
    • /
    • 2017
  • The bearing mechanism of tunnel-type anchorage (TTA) for suspension bridges is studied. Model tests are conducted using different shapes of plug bodies, which are circular column shape and circular truncated cone shape. The results show that the plug body of the latter shape possesses much larger bearing capacity, namely 4.48 times at elastic deformation stage and 4.54 times at failure stage compared to the former shape. Numerical simulation is then conducted to understand the mechanical and structural responses of plug body and surrounding rock mass. The mechanical parameters of the surrounding rock mass are firstly back-analyzed based on the monitoring data. The calculation laws of deformation and equivalent plastic strain show that the numerical simulation results are rational and provide subsequent mechanism analysis with an established basis. Afterwards, the bearing mechanism of TTA is studied. It is concluded that the plug body of circular truncated cone shape is able to take advantage of the material strength of the surrounding rock mass, which greatly enhances its bearing capacity. The ultimate bearing capacity of TTA, therefore, is concluded to be determined by the material strength of surrounding rock mass. Finally, recommendations for TTA design are proposed and discussed.

Cone-beam computed tomography of mandibular foramen and lingula for mandibular anesthesia

  • Ahn, Byeong-Seob;Oh, Song Hee;Heo, Chong-Kwan;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • 제50권2호
    • /
    • pp.125-132
    • /
    • 2020
  • Purpose: The positions of the mandibular foramen (MnF) and the lingula affect the success rate of inferior alveolar nerve block. The objective of this study was to investigate aspects of the MnF and the lingula relevant for mandibular block anesthesia using cone-beam computed tomography (CBCT). Materials and Methods: Fifty CBCT scans were collected from a picture archiving and communications system. All scans were taken using an Alphard Vega 3030 (Asahi Roentgen Co. Ltd., Kyoto, Japan). Fifty-eight MnFs of 30 subjects were included in the study. The position of the MnF, the size of the MnF, the position of the lingula, the size of the lingula, and the shape of the lingula were measured and recorded. All data were statistically analyzed at a significance level of P<0.05. Results: The position of MnF was 0.1 mm and 0.8 mm below the occlusal plane in males and females, respectively. The horizontal position of the MnF was slightly anterior to the center of the ramus in males and in the center in females (P<0.05). The vertical position of the MnF was lower in females than in males(P<0.05). The MnF was an oval shape with a longer anteroposterior dimension. The height of the lingula was 9.3 mm in males and 8.2 mm in females. The nodular type was the most common shape of the lingula, followed by the triangular, truncated, and assimilated types. Conclusion: CBCT provided useful information about the MnF and lingula. This information could improve the success rate of mandibular blocks.

소형 SCR 시스템 내 유동 제어를 위한 Baffle의 구조 결정에 관한 수치해석적 연구 (Numerical Study on the Baffle Structure for Determining the Flow Characteristic in Small Scale SCR System)

  • 박미정;장혁상;하지수
    • 대한환경공학회지
    • /
    • 제32권9호
    • /
    • pp.862-869
    • /
    • 2010
  • 소형 SCR 시스템(처리용량 25,300 Sm3/hr, 내부용적 $2.4{\times}2.4{\times}3.1\;m^3$)의 촉매성능개선을 목적으로 배기가스 유동제어에 관한 수치 해석적 연구가 수행되었다. 유동제어를 위해 여러 형태의 배플이 제안되었으며 CFD 해석을 통해 최적의 배플형상을 결정하였다. 유동 균일화를 위해서 설치된 배플의 유무에 따라 본 연구의 SCR 시스템에서의 촉매층 전단 5 mm에서 유속에 대한 RMS(%) 값은 약 6.2%의 차이를 보였다. 수치해석에 의해 결정된 격자 형상의 배플에서 사용된 배플판의 두께범위가 0~8 mm에서는 RMS(%) 값의 변화가 없었으나 두께 10 mm가 되면 2.5% 가량 수치가 증가하여 유동에 영향을 주었다. 격자 형상의 배플은 원뿔대 형상, 믹서 형상 배플에 비해 상대적으로 높은 유동안정도를 나타내며 형상에 따라 RMS(%) 값은 10% 이상의 차이를 나타내었다.