• 제목/요약/키워드: Trueness

검색결과 54건 처리시간 0.031초

Effect of post-rinsing time and method on accuracy of denture base manufactured with stereolithography

  • Katheng, Awutsadaporn;Kanazawa, Manabu;Komagamine, Yuriko;Iwaki, Maiko;Namano, Sahaprom;Minakuchi, Shunsuke
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권1호
    • /
    • pp.45-55
    • /
    • 2022
  • PURPOSE. This in vitro study investigates the effect of different post-rinsing times and methods on the trueness and precision of denture base resin manufactured through stereolithography. MATERIALS AND METHODS. Ninety clear photopolymer resin specimens were fabricated and divided into nine groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5, 10, and 15 min using three methods-automated, ultrasonic cleaning, and hand washing. The specimens were polymerized for 30 min at 40℃. For trueness, the scanned intaglio surface of each SLA denture base was superimposed on the original standard tessellation language (STL) file using best-fit alignment (n = 10). For precision, the scanned intaglio surface of the STL file in each specimen group was superimposed across each specimen (n = 45). The root mean square error (RMSE) was measured, and the data were analyzed statistically through one-way ANOVA and Tukey test (α < .05). RESULTS. The 10-min automated group exhibited the lowest RMSE. For trueness, this was significantly different from specimens in the 5-min hand-washed group (P < .05). For precision, this was significantly different from those of other groups (P < .05), except for the 15-min automated and 15-min ultrasonic groups. The color map results indicated that the 10-min automated method exhibited the most uniform distribution of the intaglio surface adaptation. CONCLUSION. The optimal postprocessing rinsing times and methods for achieving clear photopolymer resin were found to be the automated method with rinsing times of 10 and 15 min, and the ultrasonic method with a rinsing time of 15 min.

Analysis of the trueness and precision of complete denture bases manufactured using digital and analog technologies

  • Leonardo Ciocca;Mattia Maltauro;Valerio Cimini;Lorenzo Breschi;Angela Montanari;Laura Anderlucci;Roberto Meneghello
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권1호
    • /
    • pp.22-32
    • /
    • 2023
  • PURPOSE. Digital technology has enabled improvements in the fitting accuracy of denture bases via milling techniques. The aim of this study was to evaluate the trueness and precision of digital and analog techniques for manufacturing complete dentures (CDs). MATERIALS AND METHODS. Sixty identical CDs were manufactured using different production protocols. Digital and analog technologies were compared using the reference geometric approach, and the Δ-error values of eight areas of interest (AOI) were calculated. For each AOI, a precise number of measurement points was selected according to sensitivity analyses to compare the Δ-error of trueness and precision between the original model and manufactured prosthesis. Three types of statistical analysis were performed: to calculate the intergroup cumulative difference among the three protocols, the intergroup among the AOIs, and the intragroup difference among AOIs. RESULTS. There was a statistically significant difference between the dentures made using the oversize process and injection molding process (P < .001), but no significant difference between the other two manufacturing methods (P = .1227). There was also a statistically significant difference between the dentures made using the monolithic process and the other two processes for all AOIs (P = .0061), but there was no significant difference between the other two processes (P = 1). Within each group, significant differences among the AOIs were observed. CONCLUSION. The monolithic process yielded better results, in terms of accuracy (trueness and precision), than the other groups, although all three processes led to dentures with Δ-error values well within the clinical tolerance limit.

DLP 프린터로 제작한 상악 및 하악 의치상의 항온수조 침적에 따른 진실도(trueness) 평가 (Evaluation of trueness of maxillary and mandibular denture bases produced with a DLP printer by immersion in a constant temperature water bath)

  • 김동연;이광영
    • 대한치과기공학회지
    • /
    • 제46권2호
    • /
    • pp.28-35
    • /
    • 2024
  • Purpose: To evaluate the three-dimensional trueness of upper and lower denture bases produced using a digital light processing (DLP) printer and immersed in a constant-temperature water bath. Methods: An edentulous model was prepared and fitted with denture bases and occlusal rims manufactured using base plate wax. After scanning the model, denture bases, and occlusal rims, complete denture designs were created. Using the designs and a DLP printer, 10 upper and 10 lower complete dentures were manufactured. Each denture was scanned before (impression surface of upper denture base before constant temperature water bath [UBC] and impression surface of lower denture base before constant temperature water bath [LBC] groups) and after (impression surface of upper denture base after constant temperature water bath [UAC] and impression surface of lower denture base after constant temperature water bath [LAC] groups) immersion in the constant-temperature water bath. Scanned files were analyzed by comparing reference and scanned data, with statistical analysis conducted using the Kruskal-Wallis test (α=0.05). Results: Statistical analysis revealed no significant differences between the UBC and LBC groups, nor between the UAC and LAC groups (p>0.05). However, significant differences were observed between the UBC and UAC groups and between the LBC and LAC groups, i.e., before and after the constant-temperature water bath for both maxillary and mandibular denture bases (p<0.05). Conclusion: Denture bases not immersed in the constant-temperature water bath (UBC and LBC groups) exhibited error values within 100 ㎛, whereas those immersed in the water bath (UAC and LAC groups) showed error values exceeding 100 ㎛.

Effect of different arch widths on the accuracy of three intraoral scanners

  • Kaewbuasa, Narin;Ongthiemsak, Chakree
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.205-215
    • /
    • 2021
  • PURPOSE. The purpose of this study was to compare the accuracy of three intraoral scanner (IOS) systems with three different dental arch widths. MATERIALS AND METHODS. Three dental models with different intermolar widths (small, medium, and large) were attached to metal bars of different lengths (30, 40, and 50 mm). The bars were measured with a coordinate measuring machine and used as references. Three IOSs were compared: TRIOS 3 (TRI), True Definition (TD), and Dental Wings (DW). The relative length and angular deviation of both ends of the metal bars from the scan data set (n = 15) were calculated and analyzed. RESULTS. Comparing among scanners in terms of trueness, the relative length deviation of DW in the small (1.28%) and medium (1.08%) arches were significantly higher than TRI (0.46% and 0.48%) and TD (0.33% and 0.18%). The angular deviation of DW in the small (1.75°) and medium (1.83°) arches were also significantly greater than TRI (0.63° and 0.40°) and TD (0.55° and 0.89°). Comparing within scanner, the large arch of DW showed better accuracy than other arch sizes (P < .05). On the other hand, the larger arch of TD presented a greater tendency of angular deviation in terms of trueness. No significant differences were found in terms of trueness between the arch widths of TRI group. CONCLUSION. The different widths of the dental arches can affect the accuracy of some intraoral scanners in full arch scan.

Accuracy of 14 intraoral scanners for the All-on-4 treatment concept: a comparative in vitro study

  • Gozde, Kaya;Caglar, Bilmenoglu
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권6호
    • /
    • pp.388-398
    • /
    • 2022
  • PURPOSE. This in vitro study aimed to evaluate the accuracy of 14 different intraoral scanners for the All-on-4 treatment concept. MATERIALS AND METHODS. Four implants were placed in regions 13, 16, 23, and 26 of an edentulous maxillary model that was poured with scannable Type 4 gypsum to imitate the All-on-4 concept. The cast was scanned 10 times for each of 14 intraoral scanners (Primescan, iTero 2, iTero 5D, Virtuo Vivo, Trios 3, Trios 4, CS3600, CS3700, Emerald, Emerald S, Medit i500, BenQ BIS-I, Heron IOS, and Aadva IOS 100P) after the polyether ether ketone scanbody was placed. For the control group, the gypsum model was scanned 10 times with an industrial scanner. The first of the 10 virtual models obtained from the industrial model was chosen as the reference model. For trueness, the data of the 14 dental scanners were superimposed with the reference model; for precision, the data of all 14 scanners were superimposed within the groups. Statistical analyses were performed using the Kolmogorov-Smirnov, Shapiro-Wilks, and Dunn's tests. RESULTS. Primescan showed the highest trueness and precision values (P < .005), followed by the iTero 5D scanner (P < .005). CONCLUSION. Some of these digital scanners can be used to make impressions within the All-on-4 concept. However, the possibility of data loss due to artifacts, reflections, and the inability to combine the data should be considered.

Accuracy of intraoral scans of edentulous jaws with different generations of intraoral scanners compared to laboratory scans

  • Kontis, Panagiotis;Guth, Jan-Frederik;Schubert, Oliver;Keul, Christine
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권5호
    • /
    • pp.316-326
    • /
    • 2021
  • PURPOSE. Purpose of this in vitro study was to determine the accuracy of different intraoral scans versus laboratory scans of impressions and casts for the digitization of an edentulous maxilla. MATERIALS AND METHODS. A PEEK model of an edentulous maxilla, featuring four hemispheres on the alveolar ridges in region 13, 17, 23 and 27, was industrially digitized to obtain a reference dataset (REF). Intraoral scans using Cerec Primescan AC (PRI) and Cerec AC Omnicam (OMN), as well as conventional impressions (scannable polyvinyl siloxane) were carried out (n = 25). Conventional impressions (E5I) and referring plaster casts were scanned with the inEOS X5 (E5M). All datasets were exported in STL and analyzed (Geomagic Qualify). Linear and angular differences were evaluated by virtually constructed measurement points in the centers of the hemispheres (P13, P17, P23, P27) and lines between the points (P17-P13, P17-P23, P17-P27). Kolmogorov-Smirnov test and Shapiro-Wilk test were performed to test for normal distribution, Kruskal-Wallis-H test, and Mann-Whitney-U test to detect significant differences in trueness, followed by 2-sample Kolmogorov-Smirnov test to detect significant differences in precision (P < .008). RESULTS. Group PRI showed the highest trueness in linear and angular parameters (P < .001), while group E5I showed the highest precision (P < .001). CONCLUSION. Intraoral scan data obtained using Primescan showed the highest trueness while the indirect digitization of impressions showed the highest precision. To enhance the workflow, indirect digitization of the impression itself appears to be a reasonable technique, as it combines fast access to the digital workflow with the possibility of functional impression of mucosal areas.

Does the palatal vault form have an influence on the scan time and accuracy of intraoral scans of completely edentulous arches? An in-vitro study

  • Osman, Reham;Alharbi, Nawal
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.294-304
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate the influence of different palatal vault configurations on the accuracy and scan speed of intraoral scans (IO) of completely edentulous arches. MATERIALS AND METHODS. Three different virtual models of a completely edentulous maxillary arch with different palatal vault heights- Cl I moderate (U-shaped), Cl II deep (steep) and Cl III shallow (flat)-were digitally designed using CAD software (Meshmixer; Autodesk, USA) and 3D-printed using SLA-based 3D-printer (XFAB; DWS, Italy) (n = 30; 10 specimens per group). Each model was scanned using intraoral scanner (Trios 3; 3ShapeTM, Denmark). Scanning time was recorded for all samples. Scanning accuracy (trueness and precision) were evaluated using digital subtraction technique using Geomagic Control X v2020 (Geomagic; 3DSystems, USA). One-way analysis of variance (ANOVA) test was used to detect differences in scanning time, trueness and precision among the test groups. Statistical significance was set at α = .05. RESULTS. The scan process could not be completed for Class II group and manufacturer's recommended technique had to be modified. ANOVA revealed no statistically significant difference in trueness and precision values among the test groups (P=.959 and P=.658, respectively). Deep palatal vault (Cl II) showed significantly longer scan time compared to Cl I and III. CONCLUSION. The selection of scan protocol in complex cases such as deep palatal vault is of utmost importance. The modified, adopted longer path scan protocol of deep vault cases resulted in increased scan time when compared to the other two groups.

Effect of angulation on the 3D trueness of conventional and digital implant impressions for multi-unit restorations

  • Ozay Onoral;Sevcan Kurtulmus-Yilmaz;Dilem Toksoy;Oguz Ozan
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권6호
    • /
    • pp.290-301
    • /
    • 2023
  • PURPOSE. The study aimed to determine the influence of implant angulation on the trueness of multi-unit implant impressions taken through different techniques and strategies. MATERIALS AND METHODS. As reference models, three partially edentulous mandibular models (Model 1: No angulation; Model 2: No angulation for #33, 15-degree distal angulation for #35 and #37; Model 3: No angulation for #33, 25-degree distal angulation for #35 and #37) were created by modifying the angulations of implant analogues. Using a lab scanner, these reference models were scanned. The obtained data were preserved and utilized as virtual references. Three intraoral scanning (IOS) strategies: IOS-Omnicam, ISO-Quadrant, and IOS-Consecutive, as well as two traaditional techniques: splinted open tray (OT) and closed tray (CT), were used to create impressions from each reference model. The best-fit alignment approach was used to sequentially superimpose the reference and test scan data. Computations and statistical analysis of angular (AD), linear (LD), and 3D deviations (RMS) were performed. RESULTS. Model type, impression technique, as well as interaction factor, all demonstrated a significant influence on AD and LD values for all implant locations (P < .05). The Model 1 and SOT techniques displayed the lowest mean AD and LD values across all implant locations. When considering interaction factors, CT-Model 3 and SOT-Model 1 exhibited the highest and lowest mean AD and LD values, respectively. Model type, impression technique, and interaction factor all revealed significant effects on RMS values (P ≤ .001). CT-Model 3 and SOT-Model 1 presented the highest and lowest mean RMS values, respectively. CONCLUSION. Splinted-OT and IOS-Omnicam are recommended for multi-unit implant impressions to enhance trueness, potentially benefiting subsequent manufacturing stages.

Influence of Band and Loop Type Space Maintainer on Intraoral Scanning Accuracy of an Adjacent Tooth

  • Ju Ri Ye;Yong Kwon Chae;Ko Eun Lee;Hyo-Seol Lee;Sung Chul Choi;Ok Hyung Nam
    • Journal of Korean Dental Science
    • /
    • 제16권2호
    • /
    • pp.149-155
    • /
    • 2023
  • Purpose: The purpose of this study was to evaluate whether the presence of a space maintainer affects the accuracy of an intraoral scanner. Materials and Methods: The maxillary primary first molar typodont tooth was removed from the primary dentition typodont model and a band and loop type space maintainer was delivered. After the model was connected to a dental phantom, intraoral scan was performed using TRIOS 4 (3Shape A/S, Copenhagen, Denmark). The scan was repeated with the same technique without the space maintainer. Each scan was performed 10 times. All scan files into a GOM inspect 2018 software and evaluated the accuracy. The accuracy was evaluated on trueness and precision, and calculated using the root mean square value. Result: When there was a space maintainer in the oral cavity, the trueness value was 0.10±0.02 mm and the precision value was 0.15±0.03 mm. In the absence of the space maintainer, the trueness value was 0.12±0.03 mm and the precision value was 0.16±0.04 mm. There were no significant differences depending on the presence of a space maintainer (P>0.05). Conclusion: Within the limits of this study, the accuracy of the intraoral scanner was not influenced by the presence of space maintainer.